최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기BMC bioinformatics, v.21 no.1, 2020년, pp.486 -
Seo, Hyein (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141 Daejeon, Republic of Korea) , Cho, Dong-Ho (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141 Daejeon, Republic of Korea)
BackgroundSince the development of sequencing technology, an enormous amount of genetic information has been generated, and human cancer analysis using this information is drawing attention. As the effects of variants on human cancer become known, it is important to find cancer-associated variants a...
1. Zhang J Chiodini R Badr A Zhang G The impact of next-generation sequencing on genomics J Genet Genom 2011 38 3 95 109
2. Meldrum C Doyle MA Tothill RW Next-generation sequencing for cancer diagnostics: a practical perspective Clin Biochem Rev 2011 32 4 177 195 22147957
3. Brennan P Wild CP Genomics of cancer and a new era for cancer prevention PLoS Genet 2015 11 11
4. Nakagawa H Fujita M Whole genome sequencing analysis for cancer genomics and precision medicine Cancer Sci 2018 109 3 513 522 29345757
5. Xu C A review of somatic single nucleotide variant calling algorithms for next-generation sequencing data Comput Struct Biotechnol J 2018 16 15 24 29552334
6. Greenman C Stephens P Smith R Dalgliesh GL Hunter C Bignell G Davies H Teague J Butler A Stevens C Patterns of somatic mutation in human cancer genomes Nature 2007 446 7132 153 158 17344846
7. Martincorena I Campbell PJ Somatic mutation in cancer and normal cells Science 2015 349 6255 1483 1489 26404825
8. Miraflor AP de Abreu FB Peterson JD Turner SA Amos CI Tsongalis GJ Yan S Somatic mutation analysis in melanoma using targeted next generation sequencing Exp Mol Pathol 2017 103 2 172 177 28822769
9. Krøigard AB Larsen MJ Lænkholm AV Knoop AS Jensen JD Bak M Mollenhauer J Thomassen M Kruse TA Identification of metastasis driver genes by massive parallel sequencing of successive steps of breast cancer progression PLoS ONE 2018 13 1
10. Cannataro VL Gaffney SG Townsend JP Effect sizes of somatic mutations in cancer J Nat Cancer Inst 2018 110 11 1171 1177 30365005
11. Xie T Cho YB Wang K Huang D Hong HK Choi YL Ko YH Nam DH Jin J Yang H Patterns of somatic alterations between matched primary and metastatic colorectal tumors characterized by whole-genome sequencing Genomics 2014 104 4 234 241 25066378
12. Girish C Ferat S A survey on feature selection methods Comput Electr Eng 2014 40 1 16 28
13. Saeys Y Inza I Larranaga P A review of feature selection techniques in bioinformatics Bioinformatics 2007 23 19 2507 2517 17720704
14. Erzurumluoglu AM Rodriguez S Shihab HA Baird D Richardson TG Day IN Gaunt TR Identifying highly penetrant disease causal mutations using next generation sequencing: guide to whole process BioMed Res Int 2015 2015 923491 26106619
15. Jovi A, Brki K, Bogunovi N. A review of feature selection methods with applications. In: 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2015;1200?1205. IEEE.
16. Alikovi E Subasi A Breast cancer diagnosis using GA feature selection and rotation forest Neural Comput Appl 2017 28 4 753 763
17. Xi M Sun J Liu L Fan F Wu X Cancer feature selection and classification using a binary quantum-behaved particle swarm optimization and support vector machine Comput Math Methods Med 2016 2016 3572705 27642363
18. Zhao G Wu Y Feature subset selection for cancer classification using weight local modularity Sci Rep 2016 6 34759 34774 27703256
19. Liu S Xu C Zhang Y Liu J Yu B Liu X Dehmer M Feature selection of gene expression data for cancer classification using double RBF-kernels BMC Bioinform 2018 19 1 396 409
20. Sakoparnig T Fried P Beerenwinkel N Identification of constrained cancer driver genes based on mutation timing PLoS Comput Biol 2015 11 1
21. Behravan H Hartikainen JM Tengstrom M Pylkas K Winqvist R Kosma VM Mannermaa A Machine learning identifies interacting genetic variants contributing to breast cancer risk: a case study in Finnish cases and controls Sci Rep 2018 8 1 13149 13161 30177847
22. Ahsen ME Boren TP Singh NK Misganaw B Mutch DG Moore KN Backes FJ McCourt CK Lea JS Miller DS Sparse feature selection for classification and prediction of metastasis in endometrial cancer BMC Genom 2017 18 3 233 244
23. Daniel CK Qunyuan Z David EL Dong S Michael DM Ling L Christopher AM Elaine RM Li D Richard KW VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing Genome Res 2012 22 3 568 576 22300766
24. Wang K Li M Hakonarson H ANNOVAR functional annotation of genetic variants from high-throughput sequencing data Nucleic Acids Res 2010 38 16 164
25. Forbes S Bindal N Bamford S Cole C Yin Kok C Beare D Jia M Shepherd R Leung K Menzies A COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer Nucleic Acids Res 2010 39 1 945 950
26. Cortes C Vapnik V Support-vector networks Mach Learn 1995 20 3 273 297
27. Manolio TA Genomewide association studies and assessment of the risk of disease N Engl J Med 2010 363 2 166 176 20647212
28. Kohler S Carmody L Vasilevsky N Jacobsen JOB Danis D Gourdine J-P Gargano M Harris NL Matentzoglu N McMurry JA Expansion of the human phenotype ontology (HPO) knowledge base and resources Nucleic Acids Res 2018 47 D1 1018 1027
29. Kanehisa M Goto S KEGG: kyoto encyclopedia of genes and genomes Nucleic Acids Res 2000 28 1 27 30 10592173
30. David EL Christopher CH Ken C Daniel CK Travis EA David JD Timothy JL Elaine RM Richard KW Li D SomaticSniper: identification of somatic point mutations in whole genome sequencing data Bioinformatics 2011 28 3 311 317 22155872
31. Zhang F Lupski JR Non-coding genetic variants in human disease Hum Mol Genet 2015 24 R1 102 110
32. Zhu Y Tazearslan C Suh Y Challenges and progress in interpretation of non-coding genetic variants associated with human disease Exp Biol Med 2017 242 13 1325 1334
33. Andrew Hall M. Correlation-based feature selection for machine learning. PhD thesis, The University of Waikato, Department of Computer Science, 1999.
34. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995;39?43. IEEE.
35. Lee S Soak S Oh S Pedrycz W Jeon M Modified binary particle swarm optimization Prog Nat Sci 2008 18 9 1161 1166
36. Kennedy J, Eberhart RC. A discrete binary version of the particle swarm algorithm. In: IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, 1997;5:4104?4108. IEEE.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.