$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] EZH2 as a Potential Target for NAFLD Therapy 원문보기

International journal of molecular sciences, v.21 no.22, 2020년, pp.8617 -   

Lim, Hyun Jung (Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea) ,  Kim, Mirang (hjlim@kribb.re.kr)

Abstract AI-Helper 아이콘AI-Helper

Non-alcoholic fatty liver disease (NAFLD) is a complex disease that is affected by genetic predisposition and epigenetic modification. Deregulation of epigenetic pathways is now recognized as a frequent event in NAFLD, and understanding the mechanistic roles of these epigenetic factors may lead to n...

Keyword

참고문헌 (114)

  1. 1. Cotter T.G. Rinella M. Nonalcoholic fatty liver disease 2020: The state of the disease Gastroenterology 2020 158 1851 1864 10.1053/j.gastro.2020.01.052 32061595 

  2. 2. Swinburn B.A. Sacks G. Hall K.D. McPherson K. Finegood D.T. Moodie M.L. Gortmaker S.L. The global obesity pandemic: Shaped by global drivers and local environments Lancet 2011 378 804 814 10.1016/S0140-6736(11)60813-1 21872749 

  3. 3. Dowman J.K. Tomlinson J.W. Newsome P.N. Pathogenesis of non-alcoholic fatty liver disease QJM 2010 103 71 83 10.1093/qjmed/hcp158 19914930 

  4. 4. Day C.P. James O.F. Steatohepatitis: A tale of two “hits”? Gastroenterology 1998 114 842 845 10.1016/S0016-5085(98)70599-2 9547102 

  5. 5. Day C.P. From fat to inflammation Gastroenterology 2006 130 207 210 10.1053/j.gastro.2005.11.017 16401483 

  6. 6. Buzzetti E. Pinzani M. Tsochatzis E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) Metabolism 2016 65 1038 1048 10.1016/j.metabol.2015.12.012 26823198 

  7. 7. Ludwig J. Viggiano T.R. McGill D.B. Oh B.J. Nonalcoholic steatohepatitis: Mayo clinic experiences with a hitherto unnamed disease Mayo. Clin. Proc. 1980 55 434 438 7382552 

  8. 8. Eslam M. Sanyal A.J. George J. International Consensus P. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease Gastroenterology 2020 158 1999 2014.e1991 10.1053/j.gastro.2019.11.312 32044314 

  9. 9. Adams L.A. Lymp J.F. St Sauver J. Sanderson S.O. Lindor K.D. Feldstein A. Angulo P. The natural history of nonalcoholic fatty liver disease: A population-based cohort study Gastroenterology 2005 129 113 121 10.1053/j.gastro.2005.04.014 16012941 

  10. 10. Fassio E. Alvarez E. Dominguez N. Landeira G. Longo C. Natural history of nonalcoholic steatohepatitis: A longitudinal study of repeat liver biopsies Hepatology 2004 40 820 826 10.1002/hep.20410 15382171 

  11. 11. Koopman K.E. Caan M.W. Nederveen A.J. Pels A. Ackermans M.T. Fliers E. la Fleur S.E. Serlie M.J. Hypercaloric diets with increased meal frequency, but not meal size, increase intrahepatic triglycerides: A randomized controlled trial Hepatology 2014 60 545 553 10.1002/hep.27149 24668862 

  12. 12. Vilar-Gomez E. Martinez-Perez Y. Calzadilla-Bertot L. Torres-Gonzalez A. Gra-Oramas B. Gonzalez-Fabian L. Friedman S.L. Diago M. Romero-Gomez M. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis Gastroenterology 2015 149 367 378 10.1053/j.gastro.2015.04.005 25865049 

  13. 13. Pydyn N. Miekus K. Jura J. Kotlinowski J. New therapeutic strategies in nonalcoholic fatty liver disease: A focus on promising drugs for nonalcoholic steatohepatitis Pharmacol. Rep. 2020 72 1 12 10.1007/s43440-019-00020-1 32016853 

  14. 14. Munteanu M.A. Nagy G.A. Mircea P.A. Current management of NAFLD Clujul. Med. 2016 89 19 23 10.15386/cjmed-539 27004021 

  15. 15. Oseini A.M. Sanyal A.J. Therapies in non-alcoholic steatohepatitis (NASH) Liver Int. 2017 37 Suppl. 1 97 103 10.1111/liv.13302 28052626 

  16. 16. Musso G. Cassader M. Gambino R. Non-alcoholic steatohepatitis: Emerging molecular targets and therapeutic strategies Nat. Rev. Drug Discov. 2016 15 249 274 10.1038/nrd.2015.3 26794269 

  17. 17. Bugianesi E. Moscatiello S. Ciaravella M.F. Marchesini G. Insulin resistance in nonalcoholic fatty liver disease Curr. Pharm. Des. 2010 16 1941 1951 10.2174/138161210791208875 20370677 

  18. 18. Mendez-Sanchez N. Cruz-Ramon V.C. Ramirez-Perez O.L. Hwang J.P. Barranco-Fragoso B. Cordova-Gallardo J. New aspects of lipotoxicity in nonalcoholic steatohepatitis Int. J. Mol. Sci. 2018 19 2034 10.3390/ijms19072034 

  19. 19. Bird A. Perceptions of epigenetics Nature 2007 447 396 398 10.1038/nature05913 17522671 

  20. 20. Egger G. Liang G. Aparicio A. Jones P.A. Epigenetics in human disease and prospects for epigenetic therapy Nature 2004 429 457 463 10.1038/nature02625 15164071 

  21. 21. Lu Y. Chan Y.T. Tan H.Y. Li S. Wang N. Feng Y. Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy Mol. Cancer 2020 19 79 10.1186/s12943-020-01197-3 32340605 

  22. 22. Kim K.H. Roberts C.W. Targeting EZH2 in cancer Nat. Med. 2016 22 128 134 10.1038/nm.4036 26845405 

  23. 23. Eslam M. Valenti L. Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical impact J. Hepatol. 2018 68 268 279 10.1016/j.jhep.2017.09.003 29122391 

  24. 24. Romeo S. Kozlitina J. Xing C. Pertsemlidis A. Cox D. Pennacchio L.A. Boerwinkle E. Cohen J.C. Hobbs H.H. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease Nat. Genet. 2008 40 1461 1465 10.1038/ng.257 18820647 

  25. 25. Del Campo J.A. Gallego-Duran R. Gallego P. Grande L. Genetic and epigenetic regulation in nonalcoholic fatty liver disease (NAFLD) Int. J. Mol. Sci. 2018 19 911 10.3390/ijms19030911 29562725 

  26. 26. Kim M. DNA methylation: A cause and consequence of type 2 diabetes Genom. Inform. 2019 17 e38 10.5808/GI.2019.17.4.e38 31896238 

  27. 27. Murphy S.K. Yang H. Moylan C.A. Pang H. Dellinger A. Abdelmalek M.F. Garrett M.E. Ashley-Koch A. Suzuki A. Tillmann H.L. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease Gastroenterology 2013 145 1076 1087 10.1053/j.gastro.2013.07.047 23916847 

  28. 28. Hotta K. Kitamoto T. Kitamoto A. Ogawa Y. Honda Y. Kessoku T. Yoneda M. Imajo K. Tomeno W. Saito S. Identification of the genomic region under epigenetic regulation during non-alcoholic fatty liver disease progression Hepatol. Res. 2018 48 E320 E334 10.1111/hepr.12992 29059699 

  29. 29. Ahrens M. Ammerpohl O. von Schonfels W. Kolarova J. Bens S. Itzel T. Teufel A. Herrmann A. Brosch M. Hinrichsen H. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery Cell Metab. 2013 18 296 302 10.1016/j.cmet.2013.07.004 23931760 

  30. 30. Kitamoto T. Kitamoto A. Ogawa Y. Honda Y. Imajo K. Saito S. Yoneda M. Nakamura T. Nakajima A. Hotta K. Targeted-bisulfite sequence analysis of the methylation of CpG islands in genes encoding PNPLA3 , SAMM50 , and PARVB of patients with non-alcoholic fatty liver disease J. Hepatol. 2015 63 494 502 10.1016/j.jhep.2015.02.049 25776890 

  31. 31. Walle P. Mannisto V. de Mello V.D. Vaittinen M. Perfilyev A. Hanhineva K. Ling C. Pihlajamaki J. Liver DNA methylation of FADS2 associates with FADS2 genotype Clin. Epigenet. 2019 11 10 10.1186/s13148-019-0609-1 30654845 

  32. 32. Kaelin W.G. Jr. McKnight S.L. Influence of metabolism on epigenetics and disease Cell 2013 153 56 69 10.1016/j.cell.2013.03.004 23540690 

  33. 33. Lu C. Thompson C.B. Metabolic regulation of epigenetics Cell Metab. 2012 16 9 17 10.1016/j.cmet.2012.06.001 22768835 

  34. 34. Seto E. Yoshida M. Erasers of histone acetylation: The histone deacetylase enzymes Cold Spring Harb. Perspect. Biol. 2014 6 a018713 10.1101/cshperspect.a018713 24691964 

  35. 35. Niki T. Rombouts K. De Bleser P. De Smet K. Rogiers V. Schuppan D. Yoshida M. Gabbiani G. Geerts A. A histone deacetylase inhibitor, trichostatin a, suppresses myofibroblastic differentiation of rat hepatic stellate cells in primary culture Hepatology 1999 29 858 867 10.1002/hep.510290328 10051490 

  36. 36. Park K.C. Park J.H. Jeon J.Y. Kim S.Y. Kim J.M. Lim C.Y. Lee T.H. Kim H.K. Lee H.G. Kim S.M. A new histone deacetylase inhibitor improves liver fibrosis in BDL rats through suppression of hepatic stellate cells Br. J. Pharmacol. 2014 171 4820 4830 10.1111/bph.12590 24467283 

  37. 37. Tian Y. Wong V.W. Wong G.L. Yang W. Sun H. Shen J. Tong J.H. Go M.Y. Cheung Y.S. Lai P.B. Histone deacetylase HDAC8 promotes insulin resistance and beta-catenin activation in NAFLD-associated hepatocellular carcinoma Cancer Res. 2015 75 4803 4816 10.1158/0008-5472.CAN-14-3786 26383163 

  38. 38. Dhalluin C. Carlson J.E. Zeng L. He C. Aggarwal A.K. Zhou M.M. Structure and ligand of a histone acetyltransferase bromodomain Nature 1999 399 491 496 10.1038/20974 10365964 

  39. 39. Belkina A.C. Denis G.V. BET domain co-regulators in obesity, inflammation and cancer Nat. Rev. Cancer 2012 12 465 477 10.1038/nrc3256 22722403 

  40. 40. Theodoulou N.H. Tomkinson N.C. Prinjha R.K. Humphreys P.G. Clinical progress and pharmacology of small molecule bromodomain inhibitors Curr. Opin. Chem. Biol. 2016 33 58 66 10.1016/j.cbpa.2016.05.028 27295577 

  41. 41. Ding N. Hah N. Yu R.T. Sherman M.H. Benner C. Leblanc M. He M. Liddle C. Downes M. Evans R.M. BRD4 is a novel therapeutic target for liver fibrosis Proc. Natl. Acad. Sci. USA 2015 112 15713 15718 10.1073/pnas.1522163112 26644586 

  42. 42. Jambhekar A. Dhall A. Shi Y. Roles and regulation of histone methylation in animal development Nat. Rev. Mol. Cell Biol. 2019 20 625 641 10.1038/s41580-019-0151-1 31267065 

  43. 43. Klose R.J. Kallin E.M. Zhang Y. JmjC-domain-containing proteins and histone demethylation Nat. Rev. Genet. 2006 7 715 727 10.1038/nrg1945 16983801 

  44. 44. Bricambert J. Alves-Guerra M.C. Esteves P. Prip-Buus C. Bertrand-Michel J. Guillou H. Chang C.J. Vander Wal M.N. Canonne-Hergaux F. Mathurin P. The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity Nat. Commun. 2018 9 2092 10.1038/s41467-018-04361-y 29844386 

  45. 45. Page A. Paoli P.P. Hill S.J. Howarth R. Wu R. Kweon S.M. French J. White S. Tsukamoto H. Mann D.A. Alcohol directly stimulates epigenetic modifications in hepatic stellate cells J. Hepatol. 2015 62 388 397 10.1016/j.jhep.2014.09.033 25457206 

  46. 46. Perugorria M.J. Wilson C.L. Zeybel M. Walsh M. Amin S. Robinson S. White S.A. Burt A.D. Oakley F. Tsukamoto H. Histone methyltransferase ash1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation Hepatology 2012 56 1129 1139 10.1002/hep.25754 22488473 

  47. 47. Argemi J. Bataller R. Identifying new epigenetic drivers of liver fibrosis Cell Mol. Gastroenterol. Hepatol. 2019 7 237 238 10.1016/j.jcmgh.2018.09.015 30539791 

  48. 48. Ringrose L. Paro R. Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins Ann. Rev. Genet. 2004 38 413 443 10.1146/annurev.genet.38.072902.091907 15568982 

  49. 49. Francis N.J. Kingston R.E. Woodcock C.L. Chromatin compaction by a polycomb group protein complex Science 2004 306 1574 1577 10.1126/science.1100576 15567868 

  50. 50. Bernstein B.E. Mikkelsen T.S. Xie X. Kamal M. Huebert D.J. Cuff J. Fry B. Meissner A. Wernig M. Plath K. A bivalent chromatin structure marks key developmental genes in embryonic stem cells Cell 2006 125 315 326 10.1016/j.cell.2006.02.041 16630819 

  51. 51. Di Croce L. Helin K. Transcriptional regulation by polycomb group proteins Nat. Struct. Mol. Biol. 2013 20 1147 1155 10.1038/nsmb.2669 24096405 

  52. 52. Margueron R. Li G. Sarma K. Blais A. Zavadil J. Woodcock C.L. Dynlacht B.D. Reinberg D. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms Mol. Cell 2008 32 503 518 10.1016/j.molcel.2008.11.004 19026781 

  53. 53. Gunawan M. Venkatesan N. Loh J.T. Wong J.F. Berger H. Neo W.H. Li L.Y. La Win M.K. Yau Y.H. Guo T. The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin Nat. Immunol. 2015 16 505 516 10.1038/ni.3125 25751747 

  54. 54. Kim E. Kim M. Woo D.H. Shin Y. Shin J. Chang N. Oh Y.T. Kim H. Rheey J. Nakano I. Phosphorylation of EZH2 activates STAT3 signaling via stat3 methylation and promotes tumorigenicity of glioblastoma stem-like cells Cancer Cell 2013 23 839 852 10.1016/j.ccr.2013.04.008 23684459 

  55. 55. Su I.H. Dobenecker M.W. Dickinson E. Oser M. Basavaraj A. Marqueron R. Viale A. Reinberg D. Wulfing C. Tarakhovsky A. Polycomb group protein Ezh2 controls actin polymerization and cell signaling Cell 2005 121 425 436 10.1016/j.cell.2005.02.029 15882624 

  56. 56. Vasanthakumar A. Xu D. Lun A.T. Kueh A.J. van Gisbergen K.P. Iannarella N. Li X. Yu L. Wang D. Williams B.R. A non-canonical function of Ezh2 preserves immune homeostasis EMBO Rep. 2017 18 619 631 10.15252/embr.201643237 28223321 

  57. 57. Xu K. Wu Z.J. Groner A.C. He H.H. Cai C. Lis R.T. Wu X. Stack E.C. Loda M. Liu T. EZH2 oncogenic activity in castration-resistant prostate cancer cells is polycomb-independent Science 2012 338 1465 1469 10.1126/science.1227604 23239736 

  58. 58. Batool A. Jin C. Liu Y.X. Role of EZH2 in cell lineage determination and relative signaling pathways Front. Biosci. 2019 24 947 960 10.2741/4760 

  59. 59. Hu X. Eastman A.E. Guo S. Cell cycle dynamics in the reprogramming of cellular identity FEBS Lett. 2019 593 2840 2852 10.1002/1873-3468.13625 31562821 

  60. 60. Yao Y. Hu H. Yang Y. Zhou G. Shang Z. Yang X. Sun K. Zhan S. Yu Z. Li P. Downregulation of enhancer of zeste homolog 2 (EZH2) is essential for the induction of autophagy and apoptosis in colorectal cancer cells Genes 2016 7 83 10.3390/genes7100083 

  61. 61. Michalopoulos G.K. DeFrances M.C. Liver regeneration Science 1997 276 60 66 10.1126/science.276.5309.60 9082986 

  62. 62. Fausto N. Liver regeneration and repair: Hepatocytes, progenitor cells, and stem cells Hepatology 2004 39 1477 1487 10.1002/hep.20214 15185286 

  63. 63. Fausto N. Campbell J.S. Riehle K.J. Liver regeneration Hepatology 2006 43 S45 S53 10.1002/hep.20969 16447274 

  64. 64. Aoki R. Chiba T. Miyagi S. Negishi M. Konuma T. Taniguchi H. Ogawa M. Yokosuka O. Iwama A. The polycomb group gene product Ezh2 regulates proliferation and differentiation of murine hepatic stem/progenitor cells J. Hepatol. 2010 52 854 863 10.1016/j.jhep.2010.01.027 20395008 

  65. 65. Koike H. Ouchi R. Ueno Y. Nakata S. Obana Y. Sekine K. Zheng Y.W. Takebe T. Isono K. Koseki H. Polycomb group protein Ezh2 regulates hepatic progenitor cell proliferation and differentiation in murine embryonic liver PLoS ONE 2014 9 e104776 10.1371/journal.pone.0104776 25153170 

  66. 66. Bae W.K. Kang K. Yu J.H. Yoo K.H. Factor V.M. Kaji K. Matter M. Thorgeirsson S. Hennighausen L. The methyltransferases enhancer of zeste homolog (EZH) 1 and EZH2 control hepatocyte homeostasis and regeneration FASEB J. 2015 29 1653 1662 10.1096/fj.14-261537 25477280 

  67. 67. Grindheim J.M. Nicetto D. Donahue G. Zaret K.S. Polycomb repressive complex 2 proteins EZH1 and EZH2 regulate timing of postnatal hepatocyte maturation and fibrosis by repressing genes with euchromatic promoters in mice Gastroenterology 2019 156 1834 1848 10.1053/j.gastro.2019.01.041 30689973 

  68. 68. Cai M.Y. Tong Z.T. Zheng F. Liao Y.J. Wang Y. Rao H.L. Chen Y.C. Wu Q.L. Liu Y.H. Guan X.Y. EZH2 protein: A promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies Gut 2011 60 967 976 10.1136/gut.2010.231993 21330577 

  69. 69. Au S.L. Wong C.C. Lee J.M. Fan D.N. Tsang F.H. Ng I.O. Wong C.M. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor micrornas to promote liver cancer metastasis Hepatology 2012 56 622 631 10.1002/hep.25679 22370893 

  70. 70. Chen S. Pu J. Bai J. Yin Y. Wu K. Wang J. Shuai X. Gao J. Tao K. Wang G. EZH2 promotes hepatocellular carcinoma progression through modulating miR-22/galectin-9 axis J. Exp. Clin. Cancer Res. 2018 37 3 10.1186/s13046-017-0670-6 29316949 

  71. 71. Liu H. Liu Y. Liu W. Zhang W. Xu J. EZH2-mediated loss of miR-622 determines cxcr4 activation in hepatocellular carcinoma Nat. Commun. 2015 6 8494 10.1038/ncomms9494 26404566 

  72. 72. Feng H. Yu Z. Tian Y. Lee Y.Y. Li M.S. Go M.Y. Cheung Y.S. Lai P.B. Chan A.M. To K.F. A CCRK-EZH2 epigenetic circuitry drives hepatocarcinogenesis and associates with tumor recurrence and poor survival of patients J. Hepatol. 2015 62 1100 1111 10.1016/j.jhep.2014.11.040 25500144 

  73. 73. Mann J. Chu D.C. Maxwell A. Oakley F. Zhu N.L. Tsukamoto H. Mann D.A. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis Gastroenterology 2010 138 705 714 705?714, 714.e1-4 10.1053/j.gastro.2009.10.002 19843474 

  74. 74. Hazra S. Xiong S. Wang J. Rippe R.A. Krishna V. Chatterjee K. Tsukamoto H. Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells J. Biol. Chem. 2004 279 11392 11401 10.1074/jbc.M310284200 14702344 

  75. 75. Yang Y. Chen X.X. Li W.X. Wu X.Q. Huang C. Xie J. Zhao Y.X. Meng X.M. Li J. EZH2-mediated repression of Dkk1 promotes hepatic stellate cell activation and hepatic fibrosis J. Cell Mol. Med. 2017 21 2317 2328 10.1111/jcmm.13153 28332284 

  76. 76. Zhao H. Wang Z. Tang F. Zhao Y. Feng D. Li Y. Hu Y. Wang C. Zhou J. Tian X. Carnosol-mediated Sirtuin 1 activation inhibits Enhancer of Zeste Homolog 2 to attenuate liver fibrosis Pharmacol. Res. 2018 128 327 337 10.1016/j.phrs.2017.10.013 29106960 

  77. 77. Dooley S. ten Dijke P. Tgf-beta in progression of liver disease Cell Tissue Res. 2012 347 245 256 10.1007/s00441-011-1246-y 22006249 

  78. 78. Castilla A. Prieto J. Fausto N. Transforming growth factors beta 1 and alpha in chronic liver disease. Effects of interferon alfa therapy N. Engl. J. Med. 1991 324 933 940 10.1056/NEJM199104043241401 1900574 

  79. 79. Friedman S.L. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver Physiol. Rev. 2008 88 125 172 10.1152/physrev.00013.2007 18195085 

  80. 80. Martin-Mateos R. De Assuncao T.M. Arab J.P. Jalan-Sakrikar N. Yaqoob U. Greuter T. Verma V.K. Mathison A.J. Cao S. Lomberk G. Enhancer of zeste homologue 2 inhibition attenuates TGF-beta dependent hepatic stellate cell activation and liver fibrosis Cell Mol. Gastroenterol. Hepatol. 2019 7 197 209 10.1016/j.jcmgh.2018.09.005 30539787 

  81. 81. Vella S. Gnani D. Crudele A. Ceccarelli S. De Stefanis C. Gaspari S. Nobili V. Locatelli F. Marquez V.E. Rota R. EZH2 down-regulation exacerbates lipid accumulation and inflammation in in vitro and in vivo NAFLD Int. J. Mol. Sci. 2013 14 24154 24168 10.3390/ijms141224154 24351808 

  82. 82. Lee S. Woo D.C. Kang J. Ra M. Kim K.H. Lee S.R. Choi D.K. Lee H. Hong K.B. Min S.H. The role of the histone methyltransferase EZH2 in liver inflammation and fibrosis in STAM NASH mice Biology 2020 9 93 10.3390/biology9050093 32370249 

  83. 83. Furman B.L. Streptozotocin-induced diabetic models in mice and rats Curr. Protoc. Pharmacol. 2015 70 5.47.1 5.47.20 10.1002/0471141755.ph0547s70 26331889 

  84. 84. Saito K. Uebanso T. Maekawa K. Ishikawa M. Taguchi R. Nammo T. Nishimaki-Mogami T. Udagawa H. Fujii M. Shibazaki Y. Characterization of hepatic lipid profiles in a mouse model with nonalcoholic steatohepatitis and subsequent fibrosis Sci. Rep. 2015 5 12466 10.1038/srep12466 26289793 

  85. 85. Tam E.K. Nguyen T.M. Lim C.Z. Lee P.L. Li Z. Jiang X. Santhanakrishnan S. Tan T.W. Goh Y.L. Wong S.Y. 3-deazaneplanocin a and neplanocin a analogues and their effects on apoptotic cell death ChemMedChem 2015 10 173 182 10.1002/cmdc.201402315 25319940 

  86. 86. Fujiwara T. Saitoh H. Inoue A. Kobayashi M. Okitsu Y. Katsuoka Y. Fukuhara N. Onishi Y. Ishizawa K. Ichinohasama R. 3-deazaneplanocin a (DZNep), an inhibitor of s-adenosylmethionine-dependent methyltransferase, promotes erythroid differentiation J. Biol. Chem. 2014 289 8121 8134 10.1074/jbc.M114.548651 24492606 

  87. 87. Zeybel M. Luli S. Sabater L. Hardy T. Oakley F. Leslie J. Page A. Moran Salvador E. Sharkey V. Tsukamoto H. A proof-of-concept for epigenetic therapy of tissue fibrosis: Inhibition of liver fibrosis progression by 3-deazaneplanocin a Mol. Ther. 2017 25 218 231 10.1016/j.ymthe.2016.10.004 28129116 

  88. 88. Knutson S.K. Wigle T.J. Warholic N.M. Sneeringer C.J. Allain C.J. Klaus C.R. Sacks J.D. Raimondi A. Majer C.R. Song J. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells Nat. Chem. Biol. 2012 8 890 896 10.1038/nchembio.1084 23023262 

  89. 89. Qi W. Chan H. Teng L. Li L. Chuai S. Zhang R. Zeng J. Li M. Fan H. Lin Y. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation Proc. Natl. Acad. Sci. USA 2012 109 21360 21365 10.1073/pnas.1210371110 23236167 

  90. 90. McCabe M.T. Ott H.M. Ganji G. Korenchuk S. Thompson C. Van Aller G.S. Liu Y. Graves A.P. Della Pietra A. 3rd Diaz E. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations Nature 2012 492 108 112 10.1038/nature11606 23051747 

  91. 91. Zhou T. Sun Y. Li M. Ding Y. Yin R. Li Z. Xie Q. Bao S. Cai W. Enhancer of zeste homolog 2-catalysed H3K27 trimethylation plays a key role in acute-on-chronic liver failure via TNF-mediated pathway Cell Death Dis. 2018 9 590 10.1038/s41419-018-0670-2 29789597 

  92. 92. Konze K.D. Ma A. Li F. Barsyte-Lovejoy D. Parton T. Macnevin C.J. Liu F. Gao C. Huang X.P. Kuznetsova E. An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1 ACS Chem. Biol. 2013 8 1324 1334 10.1021/cb400133j 23614352 

  93. 93. Knutson S.K. Warholic N.M. Wigle T.J. Klaus C.R. Allain C.J. Raimondi A. Porter Scott M. Chesworth R. Moyer M.P. Copeland R.A. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2 Proc. Natl. Acad. Sci. USA 2013 110 7922 7927 10.1073/pnas.1303800110 23620515 

  94. 94. Knutson S.K. Kawano S. Minoshima Y. Warholic N.M. Huang K.C. Xiao Y. Kadowaki T. Uesugi M. Kuznetsov G. Kumar N. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in ezh2-mutant non-hodgkin lymphoma Mol. Cancer Ther. 2014 13 842 854 10.1158/1535-7163.MCT-13-0773 24563539 

  95. 95. Hoy S.M. Tazemetostat: First approval Drugs 2020 80 513 521 10.1007/s40265-020-01288-x 32166598 

  96. 96. Tan J. Yang X. Zhuang L. Jiang X. Chen W. Lee P.L. Karuturi R.K. Tan P.B. Liu E.T. Yu Q. Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells Genes Dev. 2007 21 1050 1063 10.1101/gad.1524107 17437993 

  97. 97. Beguelin W. Popovic R. Teater M. Jiang Y. Bunting K.L. Rosen M. Shen H. Yang S.N. Wang L. Ezponda T. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation Cancer Cell 2013 23 677 692 10.1016/j.ccr.2013.04.011 23680150 

  98. 98. Shahabipour F. Caraglia M. Majeed M. Derosa G. Maffioli P. Sahebkar A. Naturally occurring anti-cancer agents targeting EZH2 Cancer Lett. 2017 400 325 335 10.1016/j.canlet.2017.03.020 28323035 

  99. 99. Zhu C. Cao H. Zhou X. Dong C. Luo J. Zhang C. Liu J. Ling Y. Meta-analysis of the clinical value of danshen injection and huangqi injection in liver cirrhosis Evid. Based Complement. Alternat. Med. 2013 2013 842824 10.1155/2013/842824 24069058 

  100. 100. Woo J. Kim H.Y. Byun B.J. Chae C.H. Lee J.Y. Ryu S.Y. Park W.K. Cho H. Choi G. Biological evaluation of tanshindiols as EZH2 histone methyltransferase inhibitors Bioorg. Med. Chem. Lett. 2014 24 2486 2492 10.1016/j.bmcl.2014.04.010 24767850 

  101. 101. Shen L. Liu C.C. An C.Y. Ji H.F. How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies Sci. Rep. 2016 6 20872 10.1038/srep20872 26887346 

  102. 102. Maheshwari R.K. Singh A.K. Gaddipati J. Srimal R.C. Multiple biological activities of curcumin: A short review Life Sci. 2006 78 2081 2087 10.1016/j.lfs.2005.12.007 16413584 

  103. 103. Rahmani S. Asgary S. Askari G. Keshvari M. Hatamipour M. Feizi A. Sahebkar A. Treatment of non-alcoholic fatty liver disease with curcumin: A randomized placebo-controlled trial Phytother. Res. 2016 30 1540 1548 10.1002/ptr.5659 27270872 

  104. 104. Hua W.F. Fu Y.S. Liao Y.J. Xia W.J. Chen Y.C. Zeng Y.X. Kung H.F. Xie D. Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells Eur. J. Pharmacol. 2010 637 16 21 10.1016/j.ejphar.2010.03.051 20385124 

  105. 105. Wu G.Q. Chai K.Q. Zhu X.M. Jiang H. Wang X. Xue Q. Zheng A.H. Zhou H.Y. Chen Y. Chen X.C. Anti-cancer effects of curcumin on lung cancer through the inhibition of EZH2 and NOTCH1 Oncotarget 2016 7 26535 26550 10.18632/oncotarget.8532 27049834 

  106. 106. Mansour-Ghanaei F. Hadi A. Pourmasoumi M. Joukar F. Golpour S. Najafgholizadeh A. Green tea as a safe alternative approach for nonalcoholic fatty liver treatment: A systematic review and meta-analysis of clinical trials Phytother. Res. 2018 32 1876 1884 10.1002/ptr.6130 29947156 

  107. 107. Shimizu M. Fukutomi Y. Ninomiya M. Nagura K. Kato T. Araki H. Suganuma M. Fujiki H. Moriwaki H. Green tea extracts for the prevention of metachronous colorectal adenomas: A pilot study Cancer Epidemiol. Biomark. Prev. 2008 17 3020 3025 10.1158/1055-9965.EPI-08-0528 

  108. 108. Borutinskaite V. Virksaite A. Gudelyte G. Navakauskiene R. Green tea polyphenol egcg causes anti-cancerous epigenetic modulations in acute promyelocytic leukemia cells Leuk. Lymphoma 2018 59 469 478 10.1080/10428194.2017.1339881 28641467 

  109. 109. Lau J.K. Zhang X. Yu J. Animal models of non-alcoholic fatty liver disease: Current perspectives and recent advances J. Pathol. 2017 241 36 44 10.1002/path.4829 27757953 

  110. 110. Ouchi R. Togo S. Kimura M. Shinozawa T. Koido M. Koike H. Thompson W. Karns R.A. Mayhew C.N. McGrath P.S. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids Cell Metab. 2019 30 374 384.e376 10.1016/j.cmet.2019.05.007 31155493 

  111. 111. Mun S.J. Ryu J.S. Lee M.O. Son Y.S. Oh S.J. Cho H.S. Son M.Y. Kim D.S. Kim S.J. Yoo H.J. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids J. Hepatol. 2019 71 970 985 10.1016/j.jhep.2019.06.030 31299272 

  112. 112. Kim W. Bird G.H. Neff T. Guo G. Kerenyi M.A. Walensky L.D. Orkin S.H. Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer Nat. Chem. Biol. 2013 9 643 650 10.1038/nchembio.1331 23974116 

  113. 113. Xiao L. Tien J.C. Vo J. Tan M. Parolia A. Zhang Y. Wang L. Qiao Y. Shukla S. Wang X. Epigenetic reprogramming with antisense oligonucleotides enhances the effectiveness of androgen receptor inhibition in castration-resistant prostate cancer Cancer Res. 2018 78 5731 5740 10.1158/0008-5472.CAN-18-0941 30135193 

  114. 114. Duan R. Du W. Guo W. EZH2: A novel target for cancer treatment J. Hematol. Oncol. 2020 13 104 10.1186/s13045-020-00937-8 32723346 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로