$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Gene Expression Profile in Similar Tissues Using Transcriptome Sequencing Data of Whole-Body Horse Skeletal Muscle 원문보기

Genes, v.11 no.11, 2020년, pp.1359 -   

Lee, Ho-Yeon (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea) ,  Kim, Jae-Yoon (hylee@kribb.re.kr (H.-Y.L.)) ,  Kim, Kyoung Hyoun (jyoon@kribb.re.kr (J.-Y.K.)) ,  Jeong, Seongmun (kekgoo@gmail.com (K.H.K.)) ,  Cho, Youngbum (lovemun@kribb.re.kr (S.J.)) ,  Kim, Namshin (yycho@kribb.re.kr (Y.C.))

Abstract AI-Helper 아이콘AI-Helper

Horses have been studied for exercise function rather than food production, unlike most livestock. Therefore, the role and characteristics of tissue landscapes are critically understudied, except for certain muscles used in exercise-related studies. In the present study, we compared RNA-Seq data fro...

Keyword

참고문헌 (52)

  1. 1. Keel B.N. Zarek C.M. Keele J.W. Kuehn L.A. Snelling W.M. Oliver W.T. Freetly H.C. Lindholm-Perry A.K. Rna-seq meta-analysis identifies genes in skeletal muscle associated with gain and intake across a multi-season study of crossbred beef steers BMC Genom. 2018 19 430 10.1186/s12864-018-4769-8 

  2. 2. Kong B.W. Hudson N. Seo D. Lee S. Khatri B. Lassiter K. Cook D. Piekarski A. Dridi S. Anthony N. Rna sequencing for global gene expression associated with muscle growth in a single male modern broiler line compared to a foundational barred plymouth rock chicken line BMC Genom. 2017 18 82 10.1186/s12864-016-3471-y 28086790 

  3. 3. Ropka-Molik K. Bereta A. Zukowski K. Piorkowska K. Gurgul A. Zak G. Transcriptomic gene profiling of porcine muscle tissue depending on histological properties Anim. Sci. J. 2017 88 1178 1188 10.1111/asj.12751 28026080 

  4. 4. Li Y. Xu Z. Li H. Xiong Y. Zuo B. Differential transcriptional analysis between red and white skeletal muscle of chinese meishan pigs Int. J. Biol. Sci. 2010 6 350 360 10.7150/ijbs.6.350 20617128 

  5. 5. Francisco C.L. Jorge A.M. Dal-Pai-Silva M. Carani F.R. Cabeco L.C. Silva S.R. Muscle fiber type characterization and myosin heavy chain (myhc) isoform expression in mediterranean buffaloes Meat Sci. 2011 88 535 541 10.1016/j.meatsci.2011.02.007 21371827 

  6. 6. Ryu Y.C. Kim B.C. The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle Meat Sci. 2005 71 351 357 10.1016/j.meatsci.2005.04.015 22064236 

  7. 7. Hyytiainen H.K. Mykkanen A.K. Hielm-Bjorkman A.K. Stubbs N.C. McGowan C.M. Muscle fibre type distribution of the thoracolumbar and hindlimb regions of horses: Relating fibre type and functional role Acta Vet. Scand. 2014 56 8 10.1186/1751-0147-56-8 24468115 

  8. 8. Ropka-Molik K. Stefaniuk-Szmukier M. K Z.U. Piorkowska K. Bugno-Poniewierska M. Exercise-induced modification of the skeletal muscle transcriptome in arabian horses Physiol. Genom. 2017 49 318 326 10.1152/physiolgenomics.00130.2016 

  9. 9. Ropka-Molik K. Stefaniuk-Szmukier M. Zukowski K. Piorkowska K. Gurgul A. Bugno-Poniewierska M. Transcriptome profiling of arabian horse blood during training regimens BMC Genet. 2017 18 31 10.1186/s12863-017-0499-1 28381206 

  10. 10. Serrano A.L. Rivero J.L. Myosin heavy chain profile of equine gluteus medius muscle following prolonged draught-exercise training and detraining J. Muscle Res. Cell Motil. 2000 21 235 245 10.1023/A:1005642632711 10952171 

  11. 11. Bryan K. McGivney B.A. Farries G. McGettigan P.A. McGivney C.L. Gough K.F. MacHugh D.E. Katz L.M. Hill E.W. Equine skeletal muscle adaptations to exercise and training: Evidence of differential regulation of autophagosomal and mitochondrial components BMC Genom. 2017 18 595 10.1186/s12864-017-4007-9 28793853 

  12. 12. Catoire M. Mensink M. Boekschoten M.V. Hangelbroek R. Muller M. Schrauwen P. Kersten S. Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle PLoS ONE 2012 7 e51066 10.1371/journal.pone.0051066 23226462 

  13. 13. Nader G.A. von Walden F. Liu C. Lindvall J. Gutmann L. Pistilli E.E. Gordon P.M. Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy J. Appl. Physiol. 2014 116 693 702 10.1152/japplphysiol.01366.2013 24458751 

  14. 14. Popov D.V. Lysenko E.A. Makhnovskii P.A. Kurochkina N.S. Vinogradova O.L. Regulation of PPARGC1A gene expression in trained and untrained human skeletal muscle Physiol. Rep. 2017 5 e13543 10.14814/phy2.13543 

  15. 15. Perry C.G.R. Hawley J.A. Molecular Basis of Exercise-Induced Skeletal Muscle Mitochondrial Biogenesis: Historical Advances, Current Knowledge, and Future Challenges Cold Spring Harb. Perspect. Med. 2017 8 a029686 10.1101/cshperspect.a029686 

  16. 16. Stuart C.A. Stone W.L. Howell M.E.A. Brannon M.F. Hall H.K. Gibson A.L. Stone M.H. Myosin content of individual human muscle fibers isolated by laser capture microdissection Am. J. Physiol. Physiol. 2016 310 C381 C389 10.1152/ajpcell.00317.2015 

  17. 17. Schiaffino S. Reggiani C. Fiber Types in Mammalian Skeletal Muscles Physiol. Rev. 2011 91 1447 1531 10.1152/physrev.00031.2010 22013216 

  18. 18. Armstrong E. Iriarte A. Nicolini P. Santos J.D.L. Ithurralde J. Bielli A. Bianchi G. Penagaricano F. Comparison of transcriptomic landscapes of different lamb muscles using RNA-Seq PLoS ONE 2018 13 e0200732 10.1371/journal.pone.0200732 30040835 

  19. 19. Yoon S.H. Kim J. Cho S. Kwak W. Lee H.-K. Park K.D. Shin D. Kim H. Complete mitochondrial genome sequences of Korean native horse from Jeju Island: Uncovering the spatio-temporal dynamics Mol. Biol. Rep. 2017 44 233 242 10.1007/s11033-017-4101-8 28432484 

  20. 20. Watson J. Wilson A.M. Muscle architecture of biceps brachii, triceps brachii and supraspinatus in the horse J. Anat. 2007 210 32 40 10.1111/j.1469-7580.2006.00669.x 17229281 

  21. 21. Crook T.C. Cruickshank S.E. McGowan C.M. Stubbs N. Wakeling J.M. Wilson A.M. Payne R.C. Comparative anatomy and muscle architecture of selected hind limb muscles in the Quarter Horse and Arab J. Anat. 2008 212 144 152 10.1111/j.1469-7580.2007.00848.x 18194205 

  22. 22. Patel R.K. Jain M. NGS QC toolkit: A toolkit for quality control of next generation sequencing data PLoS ONE 2012 7 e30619 10.1371/journal.pone.0030619 22312429 

  23. 23. Dobin A. Davis C.A. Schlesinger F. Drenkow J. Zaleski C. Jha S. Batut P. Chaisson M. Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner Bioinformatics 2013 29 15 21 10.1093/bioinformatics/bts635 23104886 

  24. 24. Anders S. Huber W. Differential expression analysis for sequence count data Genome Biol. 2010 11 R106 10.1186/gb-2010-11-10-r106 20979621 

  25. 25. Love M.I. Huber W. Anders S. Moderated estimation of fold change and dispersion for rna-seq data with deseq2 Genome Biol. 2014 15 550 10.1186/s13059-014-0550-8 25516281 

  26. 26. Kramer A. Green J. Pollard J. Jr. Tugendreich S. Causal analysis approaches in ingenuity pathway analysis Bioinformatics 2014 30 523 530 10.1093/bioinformatics/btt703 24336805 

  27. 27. Thomas P.D. Muruganujan A. Ebert D. Huang X. Thomas P.D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools Nucleic Acids Res. 2018 47 D419 D426 

  28. 28. Lynch C.J. Xu Y. Hajnal A. Salzberg A.C. Kawasawa Y.I. RNA Sequencing Reveals a Slow to Fast Muscle Fiber Type Transition after Olanzapine Infusion in Rats PLoS ONE 2015 10 e0123966 10.1371/journal.pone.0123966 25893406 

  29. 29. Musumeci O. Bruno C. Mongini T. Rodolico C. Aguennouz M. Barca E. Amati A. Cassandrini D. Serlenga L. Vita G. Clinical features and new molecular findings in muscle phosphofructokinase deficiency (GSD type VII) Neuromuscul. Disord. 2012 22 325 330 10.1016/j.nmd.2011.10.022 22133655 

  30. 30. Scott W. Stevens J. A Binder?Macleod S. Human Skeletal Muscle Fiber Type Classifications Phys. Ther. 2001 81 1810 1816 10.1093/ptj/81.11.1810 11694174 

  31. 31. Peshavaria M. Day I.N. Molecular structure of the human muscle-specific enolase gene (ENO3) Biochem. J. 1991 275 427 433 10.1042/bj2750427 1840492 

  32. 32. Tsujino S. Sakoda S. Mizuno R. Kobayashi T. Suzuki T. Kishimoto S. Shanske S. DiMauro S. A Schon E. Structure of the gene encoding the muscle-specific subunit of human phosphoglycerate mutase J. Biol. Chem. 1989 264 15334 15337 2549058 

  33. 33. Wei B. Jin J.-P. TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure?function relationships Gene 2016 582 1 13 10.1016/j.gene.2016.01.006 26774798 

  34. 34. Ikeda K. Horie-Inoue K. Inoue S. Functions of estrogen and estrogen receptor signaling on skeletal muscle J. Steroid Biochem. Mol. Biol. 2019 191 105375 10.1016/j.jsbmb.2019.105375 31067490 

  35. 35. Brown E.L. Hazen B.C. Eury E. Wattez J.-S. Gantner M.L. Albert V. Chau S. Sanchez-Alavez M. Conti B. Kralli A. Estrogen-Related Receptors Mediate the Adaptive Response of Brown Adipose Tissue to Adrenergic Stimulation iScience 2018 2 221 237 10.1016/j.isci.2018.03.005 29888756 

  36. 36. Frank A.P. Palmer B.F. Clegg D.J. Do estrogens enhance activation of brown and beiging of adipose tissues? Physiol. Behav. 2018 187 24 31 10.1016/j.physbeh.2017.09.026 28988965 

  37. 37. Sanchez-Aguilera A. Arranz L. Martin-Perez D. Garcia-Garcia A. Stavropoulou V. Kubovcakova L. Isern J. Martin-Salamanca S. Langa X. Skoda R.C. Estrogen Signaling Selectively Induces Apoptosis of Hematopoietic Progenitors and Myeloid Neoplasms without Harming Steady-State Hematopoiesis Cell Stem Cell 2014 15 791 804 10.1016/j.stem.2014.11.002 25479752 

  38. 38. Radovick S. Levine J.E. Wolfe A.M. Estrogenic Regulation of the GnRH Neuron Front. Endocrinol. 2012 3 52 10.3389/fendo.2012.00052 

  39. 39. Lefeuvre R.A. Rothwell N.J. Stock M.J. Activation of brown fat thermogenesis in response to central injection of corticotropin releasing hormone in the rat Neuropharmacology 1987 26 1217 1221 10.1016/0028-3908(87)90272-3 3498913 

  40. 40. Schiaffino S. Sandri M. Murgia M. Activity-Dependent Signaling Pathways Controlling Muscle Diversity and Plasticity Physiology 2007 22 269 278 10.1152/physiol.00009.2007 17699880 

  41. 41. Solinas G. Summermatter S. Mainieri D. Gubler M. Montani J.P. Seydoux J. Smith S.R. Dulloo A.G. Corticotropin-Releasing Hormone Directly Stimulates Thermogenesis in Skeletal Muscle Possibly through Substrate Cycling between de Novo Lipogenesis and Lipid Oxidation Endocrinology 2006 147 31 38 10.1210/en.2005-1033 16210362 

  42. 42. Ubaida-Mohien C. Lyashkov A. Gonzalez-Freire M. Tharakan R. Shardell M. Moaddel R. Semba R.D. Chia C.W. Gorospe M. Rosen C.J. Discovery proteomics in aging human skeletal muscle finds change in spliceosome, immunity, proteostasis and mitochondria eLife 2019 8 8 10.7554/eLife.49874 31642809 

  43. 43. Chen M. Feng H.Z. Gupta D. Kelleher J. Dickerson K.E. Wang J. Hunt D. Jou W. Gavrilova O. Jin J.P. G(s)α deficiency in skeletal muscle leads to reduced muscle mass, fiber-type switching, and glucose intolerance without insulin resistance or deficiency Am. J. Physiol. Cell Physiol. 2009 296 C930 C940 10.1152/ajpcell.00443.2008 19158402 

  44. 44. Hood D.A. Memme J.M. Oliveira A.N. Triolo M. Maintenance of Skeletal Muscle Mitochondria in Health, Exercise, and Aging Annu. Rev. Physiol. 2019 81 19 41 10.1146/annurev-physiol-020518-114310 30216742 

  45. 45. Roth L. Koncina E. Satkauskas S. Cremel G. Aunis D. Bagnard D. The many faces of semaphorins: From development to pathology Cell. Mol. Life Sci. 2008 66 649 666 10.1007/s00018-008-8518-z 

  46. 46. Ubaida-Mohien C. Gonzalez-Freire M. Lyashkov A. Moaddel R. Chia C.W. Simonsick E.M. Sen R. Ferrucci L. Physical Activity Associated Proteomics of Skeletal Muscle: Being Physically Active in Daily Life May Protect Skeletal Muscle From Aging Front. Physiol. 2019 10 312 10.3389/fphys.2019.00312 30971946 

  47. 47. Xiang W. Zhang B. Lv F. Feng G. Chen L. Yang F. Zhang K. Cao C. Wang P. Chu M. The potential regulatory mechanisms of the gonadotropin-releasing hormone in gonadotropin transcriptions identified with bioinformatics analyses Reprod. Biol. Endocrinol. 2017 15 46 10.1186/s12958-017-0264-3 28623929 

  48. 48. Krzeminski K. The Role of Adrenomedullin in Cardiovascular Response to Exercise―A Review J. Hum. Kinet. 2016 53 127 142 10.1515/hukin-2016-0017 28149418 

  49. 49. Shimizu I. Yoshida Y. Moriya J. Nojima A. Uemura A. Kobayashi Y. Minamino T. Semaphorin3E-Induced Inflammation Contributes to Insulin Resistance in Dietary Obesity Cell Metab. 2013 18 491 504 10.1016/j.cmet.2013.09.001 24093674 

  50. 50. Rivero J.-L.L. A Scientific Background for Skeletal Muscle Conditioning in Equine Practice J. Vet. Med. Ser. A 2007 54 321 332 10.1111/j.1439-0442.2007.00947.x 

  51. 51. McAllister R.M. Reiter B.L. Amann J.F. Laughlin M.H. Skeletal muscle biochemical adaptations to exercise training in miniature swine J. Appl. Physiol. 1997 82 1862 1868 10.1152/jappl.1997.82.6.1862 9173951 

  52. 52. Harrison S.M. Whitton R.C. King M. Haussler K.K. Kawcak C.E. Stover S.M. Pandy M.G. Forelimb muscle activity during equine locomotion J. Exp. Biol. 2012 215 2980 2991 10.1242/jeb.065441 22875767 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로