$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Bayesian semiparametric mixed effects models for meta‐analysis of the literature data : An application to cadmium toxicity studies

Statistics in medicine, v.40 no.16, 2021년, pp.3762 - 3778  

Jo, Seongil (Department of Statistics, Inha University, Incheon, Republic of Korea) ,  Park, Beomjo (Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania,) ,  Chung, Yeonseung (Department of Mathematical Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) ,  Kim, Jeongseon (Department of Cancer Biomedical Science, National Cancer Center, Goyang, Republic of Korea) ,  Lee, Eunji (Department of Statistics, Korea University, Seoul, Republic of Korea) ,  Lee, Jangwon (Department of Statistics, Korea University, Seoul, Republic of Korea) ,  Choi, Taeryon (Department of Statistics, Korea University, Seoul, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

We propose Bayesian semiparametric mixed effects models with measurement error to analyze the literature data collected from multiple studies in a meta‐analytic framework. We explore this methodology for risk assessment in cadmium toxicity studies, where the primary objective is to investigate...

Keyword

참고문헌 (45)

  1. IARC . Monographs on the Evaluation of Carcinogenic Risks to Humans. Cadmium, Mercury and Exposures in the Glass Manufacturing Industry . Lyon, France : IARC Scientific Publications, IARC ; 1993 . 

  2. Il'yasova D , Schwartz GG . Cadmium and renal cancer . Toxicol Appl Pharmacol . 2005 ; 207 ( 2 ): 179 ‐ 186 . 

  3. Buchet JP , Lauwerys R , Roels H , et al. Renal effects of cadmium body burden of the general population . Lancet . 1990 ; 336 ( 8717 ): 699 ‐ 702 . 

  4. Jarup L , Akesson A . Current status of cadmium as an environmental health problem . Toxicol Appl Pharmacol . 2009 ; 238 ( 3 ): 201 ‐ 208 . 

  5. García‐Esquinas E , Pollan M , Tellez‐Plaza M , et al. Cadmium exposure and cancer mortality in a prospective cohort: the strong heart study . Environ Health Perspect . 2014 ; 122 ( 4 ): 363 ‐ 370 . 

  6. Satarug S , Moore MR . Cadmium, environmental exposure, and health outcomes . Environ Health Perspect . 2010 ; 118 : 182 ‐ 190 . 

  7. Satarug S , Moore MR . Adverse health effects of chronic exposure to low‐level cadmium in foodstuffs and cigarette smoke . Environ Health Perspect . 2004 ; 112 : 1099 ‐ 1103 . 

  8. Omarova A , Phillips CJC . A meta‐analysis of literature data relating to the relationships between cadmium intake and toxicity indicators in humans . Environ Res . 2007 ; 103 ( 3 ): 432 ‐ 440 . 

  9. Gamo M , Ono K , Nakanishi J . Meta‐analysis for deriving age‐ and gender‐specific dose–response relationships between urinary cadmium concentration and β 2 ‐microglobulinuria under environmental exposure . Environ Res . 2006 ; 101 ( 1 ): 104 ‐ 112 . 

  10. European Food Safety Authority (EFSA) . Meta‐analysis of dose‐effect relationship of cadmium for benchmark dose evaluation . EFSA J . 2009 ; 7 ( 3 ): 254 , 1 – 62 . https://doi.org/10.2903/j.efsa.2009.254r. 

  11. Woo HD , Chiu WA , Jo S , Kim J . Benchmark dose for urinary cadmium based on a marker of renal dysfunction: a meta‐analysis . PLoS One . 2015 ; 10 ( 5 ): 1 ‐ 12 . 

  12. National Cancer Center . Evaluation Report for the Integration of Heavy Metals by Oral Ingestion: Cadmium . Seoul, Korea : National Cancer Center ; 2012 . 

  13. Lenk PJ , Choi T . Bayesian analysis of shape‐restricted functions using Gaussian process priors. Statist . Dermatol Sin . 2017 ; 27 ( 1 ): 43 ‐ 69 . 

  14. Bornkamp B , Ickstadt K . Bayesian nonparametric estimation of continuous monotone functions with applications to dose‐response analysis . Biometrics . 2009 ; 65 : 198 ‐ 205 . 

  15. Wheeler M , Bailer AJ . Monotonic Bayesian semiparametric benchmark dose analysis . Risk Anal . 2012 ; 32 ( 7 ): 1207 ‐ 1218 . 

  16. Wilson A , Reif DM , Reich BJ . Hierarchical dose‐response modeling for high‐throughput toxicity screening of environmental chemicals . Biometrics . 2014 ; 70 ( 1 ): 237 ‐ 246 . 

  17. Piegorsch WW , Xiong H , Bhattacharya RN , Lin L . Benchmark dose analysis via nonparametric regression modeling . Risk Anal . 2014 ; 34 ( 1 ): 135 ‐ 151 . 

  18. Fang Q , Piegorsch WW , Barnes KY . Bayesian benchmark dose analysis . Environmetrics . 2015 ; 26 ( 5 ): 373 ‐ 382 . 

  19. Yao H , Chen M‐H , Qiu C . Bayesian modeling and inference for meta‐data with applications in efficacy evaluation of an allergic rhinitis drug . J Biopharm Stat . 2011 ; 21 ( 5 ): 992 ‐ 1005 . 

  20. Yao H , Kim S , Chen M‐H , Ibrahim JG , Shah AK , Lin J . Bayesian inference for multivariate meta‐regression with a partially observed within‐study sample covariance matrix . J Am Stat Assoc . 2015 ; 110 ( 510 ): 528 ‐ 544 . 

  21. Lenk P . Bayesian inference for semiparametric regression using a Fourier representation . J R Stat Soc B . 1999 ; 61 ( 4 ): 863 ‐ 879 . 

  22. Jo S , Choi T , Park B , Lenk PJ . bsamGP: an R package for Bayesian spectral analysis models using Gaussian process priors . J Stat Softw . 2019 ; 90 ( 10 ): 1 ‐ 40 . 

  23. Geisser S , Eddy WF . A predictive approach to model selection . J Amer Stat Assoc . 1979 ; 74 ( 365 ): 153 ‐ 160 . 

  24. Watanabe S . Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory . J Mach Learn Res . 2010 ; 11 : 3571 ‐ 3594 . 

  25. Gelman A , Hwang J , Vehtari A . Understanding predictive information criteria for Bayesian models . Stat Comput . 2014 ; 24 ( 6 ): 997 ‐ 1016 . 

  26. Lee M , Choi T , Kim J , Woo H . Bayesian analysis of dose‐effect relationship of cadmium for benchmark dose evaluation . Korean J Appl Stat . 2013 ; 26 ( 3 ): 453 ‐ 470 . 

  27. Whitehead A . Meta‐Analysis of Controlled Clinical Trials . Wiley Series in Probability and Statistics ‐ Applied Probability and Statistics Section . Hoboken, NJ : Wiley ; 2002 . 

  28. Sethuraman J . A constructive definition of Dirichlet priors . Stat Sin . 1994 ; 4 ( 2 ): 639 ‐ 650 . 

  29. Escobar MD , West M . Bayesian density estimation and inference using mixtures . J.Amer Stat Assoc . 1995 ; 90 ( 430 ): 577 ‐ 588 . 

  30. Berry SM , Carroll RJ , Ruppert D . Bayesian smoothing and regression splines for measurement error problems . J Amer Stat Assoc . 2002 ; 97 ( 457 ): 160 ‐ 169 . 

  31. Talts S , Betancourt M , Simpson D , Vehtari A , Gelman A . Validating Bayesian inference algorithms with simulation‐based calibration; 2018 . arXiv:1804.06788v1. 

  32. Filipsson AF , Sand S , Nilsson J , Victorin K . The benchmark dose method ‐ a review of available models, and recommendations for application in health risk assessment . Crit Rev Toxicol . 2003 ; 33 : 505 ‐ 542 . 

  33. Shao K , Shapiro AJ . A web‐based system for Bayesian benchmark dose estimation . Environ Health Perspect . 2018 ; 126 ( 1 ): 017002 . 

  34. Fronczyk K , Kottas A . A Bayesian nonparametric modeling framework for developmental toxicity studies . J Am Stat Assoc . 2014 ; 109 ( 507 ): 873 ‐ 888 . 

  35. Fronczyk K , Kottas A . A Bayesian approach to the analysis of quantal bioassay studies using nonparametric mixture models . Biometrics . 2014 ; 70 ( 1 ): 95 ‐ 102 . 

  36. Fronczyk K , Kottas A . Risk assessment for toxicity experiments with discrete and continuous outcomes: a Bayesian nonparametric approach . J Agric Biol Environ Stat . 2017 ; 22 ( 4 ): 585 ‐ 601 . 

  37. Wang L , Dunson DB . Bayesian isotonic density regression . Biometrika . 2011 ; 98 ( 3 ): 537 ‐ 551 . 

  38. Wheeler MW , Shao K , Bailer AJ . Quantile benchmark dose estimation for continuous endpoints . Environmetrics . 2015 ; 26 ( 5 ): 363 ‐ 372 . 

  39. Wheeler MW , Bailer A , Cole T , Park RM , Shao K . Bayesian quantile impairment threshold benchmark dose estimation for continuous endpoints . Risk Anal . 2017 ; 37 ( 11 ): 2107 ‐ 2118 . 

  40. Rosen O , Thompson WK . A Bayesian regression model for multivariate functional data . Comput Stat Data Anal . 2009 ; 53 ( 11 ): 3773 ‐ 3786 . 

  41. Quintana FA , Johnson WO , Waetjen LE , Gold EB . Bayesian nonparametric longitudinal data analysis . J Amer Stat Assoc . 2016 ; 111 ( 515 ): 1168 ‐ 1181 . 

  42. Louise R . Combining data from multiple sources, with applications to environmental risk assessment . Stat Med . 2008 ; 27 ( 5 ): 698 ‐ 710 . 

  43. Choi T , Schervish MJ , Schmitt KA , Small MJ . Bayesian hierarchical analysis for multiple health endpoints in a toxicity study . J Agric Biol Environ Stat . 2010 ; 15 ( 3 ): 290 ‐ 307 . 

  44. Haario H , Saksman E , Tamminen J . An adaptive metropolis algorithm . Bernoulli . 2001 ; 7 ( 2 ): 223 ‐ 242 . 

  45. Ishwaran H , James LF . Gibbs sampling methods for stick‐breaking priors . J Amer Stat Assoc . 2001 ; 96 ( 453 ): 161 ‐ 173 . 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로