최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Neural computing & applications, v.32 no.17, 2020년, pp.13147 - 13154
Jin, Ho-Yong , Jung, Eun-Sung , Lee, Duckki
초록이 없습니다.
Int J Distrib Sens Netw F Chen 11 8 431047 2015 10.1155/2015/431047 Chen F, Deng P, Wan J, Zhang D, Vasilakos AV, Rong X (2015) Data mining for the internet of things: literature review and challenges. Int J Distrib Sens Netw 11(8):431047. https://doi.org/10.1155/2015/431047
Distributed Keras. https://joerihermans.com/work/distributed-keras/. Accessed 16 Dec 2019
Neural Comput S Hochreiter 9 8 1735 1997 10.1162/neco.1997.9.8.1735 Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
Apache Spark™-Unified Analytics Engine for Big Data (2019). https://spark.apache.org/. Accessed 16 Dec 2019
Air korea. https://www.airkorea.or.kr/index. Accessed 16 Dec 2019
IEEE Access M Marjani 5 5247 2017 10.1109/ACCESS.2017.2689040 Marjani M, Nasaruddin F, Gani A, Karim A, Hashem IAT, Siddiqa A, Yaqoob I (2017) Big IoT data analytics: architecture, opportunities, and open research challenges. IEEE Access 5:5247-5261. https://doi.org/10.1109/ACCESS.2017.2689040
PJ Brockwell 121 2016 Introduction to time series and forecasting, Springer texts in statistics 10.1007/978-3-319-29854-2_5 Brockwell PJ, Davis RA (2016) Modeling and forecasting with ARMA Processes. In: Brockwell PJ, Davis RA (eds) Introduction to time series and forecasting, Springer texts in statistics. Springer, Cham, pp 121-155. https://doi.org/10.1007/978-3-319-29854-2_5
Salinas D, Flunkert V, Gasthaus J (2017) DeepAR: probabilistic forecasting with autoregressive recurrent networks. arXiv:1704.04110 [cs, stat]
Bui TC, Le VD, Cha SK (2018) A deep learning approach for forecasting air pollution in South Korea using LSTM. arXiv:1804.07891 [cs, stat]
Environ Sci Pollut Res X Li 23 22 22408 2016 10.1007/s11356-016-7812-9 Li X, Peng L, Hu Y, Shao J, Chi T (2016) Deep learning architecture for air quality predictions. Environ Sci Pollut Res 23(22):22408-22417. https://doi.org/10.1007/s11356-016-7812-9
Reddy VN, Mohanty S (2017) Deep air: forecasting air pollution in Beijing, China. https://www.ischool.berkeley.edu/sites/default/files/sproject_attachments/deep-air-forecasting_final.pdf. Accessed 16 Dec 2019
Environ Pollut X Li 231 997 2017 10.1016/j.envpol.2017.08.114 Li X, Peng L, Yao X, Cui S, Hu Y, You C, Chi T (2017) Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation. Environ Pollut 231:997-1004. https://doi.org/10.1016/j.envpol.2017.08.114
Srivastava N, Mansimov E, Salakhutdinov R (2015) Unsupervised learning of video representations using LSTMs. In: Proceedings of the 32nd international conference on international conference on machine learning, vol 37, ICML’15, JMLR.org. Event-place, Lille, France, pp 843-852. http://dl.acm.org/citation.cfm?id=3045118.3045209. Accessed 16 Dec 2019
Apache Hadoop. http://hadoop.apache.org/. Accessed 16 Dec 2019
UCI Machine Learning Repository: PM2.5 Data of Five Chinese Cities Data Set. https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities. Accessed 16 Dec 2019
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.