$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Exploring Environmentally Friendly Biopolymer Material Effect on Soil Tensile and Compressive Behavior 원문보기

International journal of environmental research and public health, v.17 no.23, 2020년, pp.9032 -   

Chen, Chunhui (Three Gorges Research Center for Geo-Hazards of Ministry of Education, China University of Geosciences, Wuhan 430074, China) ,  Peng, Zesen (chenchunhui@cug.edu.cn (C.C.)) ,  Gu, JiaYu (Jia_yuGu@163.com (J.G.)) ,  Peng, Yaxiong (Faculty of Engineering, China University of Geosciences, Wuhan 430074, China) ,  Huang, Xiaoyang (zxc455678125@163.com) ,  Wu, Li (Three Gorges Research Center for Geo-Hazards of Ministry of Education, China University of Geosciences, Wuhan 430074, China)

Abstract AI-Helper 아이콘AI-Helper

The study of the high-performance of biopolymers and current eco-friendly have recently emerged. However, the micro-behavior and underlying mechanisms during the test are still unclear. In this study, we conducted experimental and numerical tests in parallel to investigate the impact of different xa...

주제어

참고문헌 (41)

  1. 1. Van den Heede P. de Belie N. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’concretes: Literature review and theoretical calculations Cem. Concr. Compos. 2012 34 431 442 10.1016/j.cemconcomp.2012.01.004 

  2. 2. Salas D.A. Ramirez A.D. Rodriguez C.R. Petroche D.M. Boero A.J. Duque-Rivera J. Environmental impacts, life cycle assessment and potential improvement measures for cement production: A literature review J. Clean. Prod. 2016 113 114 122 10.1016/j.jclepro.2015.11.078 

  3. 3. Miller S.A. Moore F.C. Climate and health damages from global concrete production Nat. Clim. Chang. 2020 10 439 443 10.1038/s41558-020-0733-0 

  4. 4. Vimercati L. Cavone D. Delfino M.C. Caputi A. de Maria L. Sponselli S. Corrado V. Ferri G.M. Serio G. Asbestos air pollution: Description of a mesothelioma cluster due to residential exposure from an asbestos cement factory Int. J. Environ. Res. Public Health 2020 17 2636 10.3390/ijerph17082636 

  5. 5. Zhou Z.W. Alcala J. Yepes V. Bridge carbon emissions and driving factors based on a life-cycle assessment case study: Cable-stayed bridge over Hun He river in Liaoning, China Int. J. Environ. Res. Public Health 2020 17 5953 10.3390/ijerph17165953 

  6. 6. Gates W.P. Bouazza A. Ranjith P.G. Hydraulic conductivity of biopolymer-treated silty sand Geotechnique 2009 59 71 72 

  7. 7. Muguda S. Booth S.J. Hughes P.N. Augarde C.E. Perlot C. Bruno A.W. Gallipoli D. Mechanical properties of biopolymer-stabilised soil-based construction materials Geotechnique Lett. 2017 7 309 314 10.1680/jgele.17.00081 

  8. 8. Chen C. Wu L. Harbottle M. Influence of biopolymer gel-coated fibres on sand reinforcement as a model of plant root behavior Plant Soil 2019 438 361 375 10.1007/s11104-019-04033-w 

  9. 9. Soldo A. Biopolymers for Enhancing the Engineering Properties of Soil Ph.D. Thesis Auburn University Auburn, AL, USA 2020 

  10. 10. Pacheco-Torgal F. Ivanov V. Karak N. Jonkers H. Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials Woodhead Publishing Cambridge, UK 2016 

  11. 11. Chang I. Prasidhi A.K. Im J. Shin H.-D. Cho G.-C. Soil treatment using microbial biopolymers for anti-desertification purposes Geoderma 2015 253 39 47 10.1016/j.geoderma.2015.04.006 

  12. 12. Soldo A. Mileti M. Auad M.L. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties Sci. Rep. 2020 10 1 13 10.1038/s41598-019-57135-x 31913322 

  13. 13. Chen C. Wu L. Perdjon M. Huang X. Peng Y. The drying effect on xanthan gum biopolymer treated sandy soil shear strength Constr. Build. Mater. 2019 197 271 279 10.1016/j.conbuildmat.2018.11.120 

  14. 14. Dehghan H. Tabarsa A. Latifi N. Bagheri Y. Use of xanthan and guar gums in soil strengthening Clean Technol. Environ. Policy 2019 21 155 165 10.1007/s10098-018-1625-0 

  15. 15. Chen R. Zhang L. Budhu M. Biopolymer stabilization of mine tailings for dust control J. Geotech. Geoenvironmental Eng. 2013 139 1802 1807 10.1061/(ASCE)GT.1943-5606.0000902 

  16. 16. Cundall P.A. Strack O.D. A discrete numerical model for granular assemblies Geotechnique 1979 29 47 65 10.1680/geot.1979.29.1.47 

  17. 17. Particle Flow code in Two Dimensions (PFC2D) Itasca Consulting Group, Inc. Minneapolis, MN, USA 2008 

  18. 18. Mak J. Chen Y. Sadek M. Determining parameters of a discrete element model for soil?tool interaction Soil Tillage Res. 2012 118 117 122 10.1016/j.still.2011.10.019 

  19. 19. Potyondy D.O. Cundall P. A bonded-particle model for rock Int. J. Rock Mech. Min. Sci. 2004 41 1329 1364 10.1016/j.ijrmms.2004.09.011 

  20. 20. Tang Y. Xu G. Lian J. Yan Y. Fu D. Sun W. Research on simulation analysis method of microbial cemented sand based on discrete element method Adv. Mater. Sci. Eng. 2019 2019 1 13 10.1155/2019/7173414 

  21. 21. Chen R. Ding X. Ramey D. Lee I. Zhang L. Experimental and numerical investigation into surface strength of mine tailings after biopolymer stabilization Acta Geotech. 2016 11 1075 1085 10.1007/s11440-015-0420-x 

  22. 22. Sadek M.A. Chen Y. Liu J. Simulating shear behavior of a sandy soil under different soil conditions J. Terramechanics 2011 48 451 458 10.1016/j.jterra.2011.09.006 

  23. 23. Nandanwar M. Chen Y. Modeling and measurements of triaxial tests for a sandy loam soil Can. Biosyst. Eng. 2017 59 2.1 2.8 10.7451/CBE.2017.59.2.1 

  24. 24. Pourmand S. Chakeri H. Sharghi M. Ozcelik Y. Investigation of soil conditioning tests with three-dimensional numerical modeling Geotech. Geol. Eng. 2018 36 2869 2879 10.1007/s10706-018-0509-8 

  25. 25. Garcia-Ochoa F. Santos V.E. Casas J.A. Gomez E. Xanthan gum: Production, recovery, and properties Biotechnol. Adv. 2000 18 549 579 10.1016/S0734-9750(00)00050-1 14538095 

  26. 26. Plank J. Applications of biopolymers in construction engineering Biopolymers Online Wiley-VCH VerlagGmbH & Co. KGaA Weinheim, Germany 2005 

  27. 27. Lee S. Chang I. Chung M.-K. Kim Y. Kee J. Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing Geomech. Eng. 2017 12 831 847 10.12989/gae.2017.12.5.831 

  28. 28. Mehranpour M.H. Kulatilake P.H.S.W. Improvements for the smooth joint contact model of the particle flow code and its applications Comput. Geotech. 2017 87 163 177 10.1016/j.compgeo.2017.02.012 

  29. 29. Feng K. Montoya B. Evans T. Discrete element method simulations of bio-cemented sands Comput. Geotech. 2017 85 139 150 10.1016/j.compgeo.2016.12.028 

  30. 30. Cao R.H. Cao P. Lin H. Ma G.W. Fan X. Xiong X.G. Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: Experimental studies and particle mechanics approach Arch. Civ. Mech. Eng. 2018 18 198 214 10.1016/j.acme.2017.06.010 

  31. 31. Chang I. Im J. Cho G.-C. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering Sustainability 2016 8 251 10.3390/su8030251 

  32. 32. Patel A.K. Mathias J.-D. Michaud P. Polysaccharides as adhesives Rev. Adhes. Adhes. 2013 1 312 345 10.7569/RAA.2013.097310 

  33. 33. Lu N. Wu B. Tan C.P. Tensile strength characteristics of unsaturated sands J. Geotech. Geoenvironmental Eng. 2007 133 144 154 10.1061/(ASCE)1090-0241(2007)133:2(144) 

  34. 34. Hamzah M.O. Yee T.S. Golchin B. Voskuilen J. Use of imaging technique and direct tensile test to evaluate moisture damage properties of warm mix asphalt using response surface method Constr. Build. Mater. 2017 132 323 334 10.1016/j.conbuildmat.2016.11.092 

  35. 35. Carmona S. Effect of specimen size and loading conditions on indirect tensile test results Mater. Constr. 2009 59 7 18 10.3989/mc.2009.43307 

  36. 36. Chen C. Wu L. Harbottle M. Exploring the effect of biopolymers in near-surface soils using xanthan gum-modified sand under shear Can. Geotech. J. 2020 57 1109 1118 10.1139/cgj-2019-0284 

  37. 37. Peters J.F. Muthuswamy M. Wibowo J. Tordesillas A. Characterization of force chains in granular material Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005 72 041307 10.1103/PhysRevE.72.041307 16383373 

  38. 38. Levy-Vehel J. Fractals in Engineering Springer Berlin/Heidelberg, Germany 2005 

  39. 39. Chang I. Jooyoung I. Prasidhi A.K. Cho G.-C. Effects of Xanthan gum biopolymer on soil strengthening Constr. Build. Mater. 2015 74 65 72 10.1016/j.conbuildmat.2014.10.026 

  40. 40. Mitchell J.K. Soga K. Fundamentals of Soil Behavior John Wiley & Sons Hoboken, NJ, USA 2005 

  41. 41. Consoli N.C. Johann A.D.R. Gauer E.A. Santos V.R.d. Moretto R.L. Corte M.B. Key parameters for tensile and compressive strength of silt?lime mixtures Geotechnique Lett. 2012 2 81 85 10.1680/geolett.12.00014 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로