$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Solid Lubrication with MoS2: A Review 원문보기

Lubricants, v.7 no.7, 2019년, pp.57 -   

Vazirisereshk, Mohammad R. (Department of Mechanical Engineering, University of California Merced, Merced, CA 95343, USA) ,  Martini, Ashlie (Department of Mechanical Engineering, University of California Merced, Merced, CA 95343, USA) ,  Strubbe, David A. (Department of Physics, University of California Merced, Merced, CA 95343, USA) ,  Baykara, Mehmet Z. (Department of Mechanical Engineering, University of California Merced, Merced, CA 95343, USA)

Abstract AI-Helper 아이콘AI-Helper

Molybdenum disulfide (MoS2) is one of the most broadly utilized solid lubricants with a wide range of applications, including but not limited to those in the aerospace/space industry. Here we present a focused review of solid lubrication with MoS2 by highlighting its structure, synthesis, applicatio...

참고문헌 (214)

  1. Jost Tribology-Origin and future Wear 1990 10.1016/0043-1648(90)90068-L 136 1 

  2. 10.1002/9781118403259 Bhushan, B. (2013). Introduction to Tribology, Wiley. 

  3. Holmberg Influence of tribology on global energy consumption, costs and emissions Friction 2017 10.1007/s40544-017-0183-5 5 263 

  4. 10.1002/9783527632572 Mang, T., Bobzin, K., and Bartels, T. (2011). Industrial Tribology: Tribosystems, Friction, Wear and Surface Engineering, Lubrication, Wiley-VCH. 

  5. Donnet Historical developments and new trends in tribological and solid lubricant coatings Surf. Coat. Technol. 2004 10.1016/j.surfcoat.2003.10.022 180 76 

  6. Roberts Thin solid lubricant films in space Tribol. Int. 1990 10.1016/0301-679X(90)90042-N 23 95 

  7. Roberts Space tribology: Its role in spacecraft mechanisms J. Phys. D-Appl. Phys. 2012 10.1088/0022-3727/45/50/503001 45 503001 

  8. Savan Modern Solid Lubrication: Recent Developments and Applications of MoS2 Lubr. Sci. 2000 10.1002/ls.3010120206 12 185 

  9. Song Synthesis and properties of molybdenum disulphide: From bulk to atomic layers RSC Adv. 2015 10.1039/C4RA11852A 5 7495 

  10. Koehler, W. (1929). Antifriction and Antiabrasive Metal. (1714564A), U.S. Patent. 

  11. Donnet Super-low friction of MoS2 coatings in various environments Tribol. Int. 1996 10.1016/0301-679X(95)00094-K 29 123 

  12. Winer Molybdenum disulfide as a lubricant: A review of the fundamental knowledge Wear 1967 10.1016/0043-1648(67)90187-1 10 422 

  13. Lansdown, A.R. (1999). Molybdenum Disulphide Lubrication, Elsevier. 

  14. Voevodin Nanocomposite and nanostructured tribological materials for space applications Compos. Sci. Technol. 2005 65 741 

  15. 10.1007/978-0-387-92897-5 Wang, Q.J., and Chung, Y.W. (2013). Doped MoS2 Coatings and Their Tribology. Encyclopedia of Tribology, Springer. 

  16. Novoselov 2D materials and van der Waals heterostructures Science 2016 10.1126/science.aac9439 353 461 

  17. Peelaers Elastic Constants and Pressure-Induced Effects in MoS2 J. Phys. Chem. C 2014 10.1021/jp503683h 118 12073 

  18. Ganatra Few-Layer MoS2: A Promising Layered Semiconductor ACS Nano 2014 10.1021/nn405938z 8 4074 

  19. Hu A new (2 x 1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations J. Chem. Phys. 2013 10.1063/1.4827082 139 174702 

  20. Yu High phase-purity 1T’-MoS2- and 1T’-MoSe2- layered crystals Nat. Chem. 2018 10.1038/s41557-018-0035-6 10 638 

  21. Wypych 1T-MoS2, a New Metallic Modification of Molybdenum Disulfide J. Chem. Soc. -Chem. Commun. 1992 10.1039/C39920001386 19 1386 

  22. Jain Commentary: The Materials Project: A materials genome approach to accelerating materials innovation APL Mater. 2013 10.1063/1.4812323 1 011002 

  23. (2019, June 13). Materials Project, mp-2815. Available online: https://materialsproject.org/materials/mp-2815. 

  24. (2019, June 13). Materials Project, mp-1434. Available online: https://materialsproject.org/materials/mp-1434. 

  25. Chen Critical electronic structures controlling phase transitions induced by lithium ion intercalation in molybdenum disulphide Chin. Sci. Bull. 2013 10.1007/s11434-013-5834-y 58 1632 

  26. Gaur Surface Energy Engineering for Tunable Wettability through Controlled Synthesis of MoS2 Nano Lett. 2014 10.1021/nl501106v 14 4314 

  27. Komsa Native defects in bulk and monolayer MoS2 from first principles Phys. Rev. B 2015 10.1103/PhysRevB.91.125304 91 125304 

  28. Niu Enhancement of the Hydrogen Evolution Reaction from Ni-MoS2 Hybrid Nanoclusters ACS Catal. 2016 10.1021/acscatal.6b01274 6 6008 

  29. Ma Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production Nano Res. 2016 10.1007/s12274-016-1115-9 9 2284 

  30. Feldman High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes Science 1995 10.1126/science.267.5195.222 267 222 

  31. Wang Ni-doped MoS2 nanoparticles as highly active hydrogen evolution electrocatalysts RSC Adv. 2016 10.1039/C6RA02610A 6 16656 

  32. Miki Amorphous MoS2 as the cathode of lithium secondary batteries J. Power Sources 1995 10.1016/0378-7753(94)02136-Q 54 508 

  33. Suzuki Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry Nat. Nanotechnol. 2014 10.1038/nnano.2014.148 9 611 

  34. Jellinek Molybdenum and Niobium Sulphides Nature 1960 10.1038/185376a0 185 376 

  35. Geim The rise of graphene Nat. Mater. 2007 10.1038/nmat1849 6 183 

  36. Novoselov Two-dimensional atomic crystals Proc. Natl. Acad. Sci. USA 2005 10.1073/pnas.0502848102 102 10451 

  37. Cunningham Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersibility of Exfoliated Nanosheets Varies Only Weakly between Compounds ACS Nano 2012 10.1021/nn300503e 6 3468 

  38. Liu Large-Area Atomically Thin MoS2 Nanosheets Prepared Using Electrochemical Exfoliation ACS Nano 2014 10.1021/nn5016242 8 6902 

  39. Zhan Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate Small 2012 10.1002/smll.201102654 8 966 

  40. Lee Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor Nanoscale 2014 10.1039/c3nr05993f 6 2821 

  41. Lee Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition Adv. Mater. 2012 10.1002/adma.201104798 24 2320 

  42. Dumcenco Large-Area Epitaxial Mono layer MoS2 ACS Nano 2015 10.1021/acsnano.5b01281 9 4611 

  43. Song Patternable Large-Scale Molybdenium Disulfide Atomic Layers Grown by Gold-Assisted Chemical Vapor Deposition Angew. Chem. Int. Ed. 2014 10.1002/anie.201309474 53 1266 

  44. Yu Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS2 Continuous Films ACS Nano 2017 10.1021/acsnano.7b03819 11 12001 

  45. George Wafer Scale Synthesis and High Resolution Structural Characterization of Atomically Thin MoS2 Layers Adv. Funct. Mater. 2014 10.1002/adfm.201402519 24 7461 

  46. Liu Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates Nano Lett. 2012 10.1021/nl2043612 12 1538 

  47. Yang Wafer-scale synthesis of thickness-controllable MoS2 films via solution-processing using a dimethylformamide/n-butylamine/2-aminoethanol solvent system Nanoscale 2015 10.1039/C5NR01486G 7 9311 

  48. Fleischauer Effects of Crystallite Orientation on Environmental Stability and Lubrication Properties of Sputtered MoS2 Thin Films ASLE Trans. 1984 10.1080/05698198408981548 27 82 

  49. Martin Superlubricity of Molybdenum Disulfide Phys. Rev. B 1993 10.1103/PhysRevB.48.10583 48 10583 

  50. Krause High-precision cryogenic wheel mechanisms of the JWST/MIRI instrument: Performance of the flight models Proc. SPIE 2010 10.1117/12.856887 7739 773918 

  51. Spalvins Morphological and frictional behavior of sputtered MoS2 films Thin Solid Films 1982 10.1016/0040-6090(82)90208-5 96 17 

  52. Bichsel Correlation between process conditions, chemical composition and morphology of MoS2 films prepared by RF planar magnetron sputtering J. Phys. D Appl. Phys. 1986 10.1088/0022-3727/19/8/025 19 1575 

  53. Arslan Comparison of structure and tribological properties of MoS2-Ti films deposited by biased-dc and pulsed-dc Prog. Org. Coat. 2012 10.1016/j.porgcoat.2011.10.021 74 772 

  54. Laing The effect of ion current density on the adhesion and structure of coatings deposited by magnetron sputter ion plating Surf. Coat. Technol. 1999 10.1016/S0257-8972(98)00790-7 112 177 

  55. Zabinski Chemical and tribological characterization of PbO-MoS2 films grown by pulsed laser deposition Thin Solid Films 1992 10.1016/0040-6090(92)90764-3 214 156 

  56. Miyoshi, K. (2007). Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey, NASA/TM. 

  57. 10.1007/978-0-387-92897-5_1320 Wang, Q.J., and Chung, Y.W. (2013). Solid Lubricants. Encyclopedia of Tribology, Springer. 

  58. Conley, P.L. (1998). Solid Lubricants. Space Vehicle Mechanisms: Elements of Successful Design, Wiley-Interscience. 

  59. 10.3390/lubricants6030074 Chen, Z., He, X., Xiao, C., and Kim, S.H. (2018). Effect of Humidity on Friction and Wear-A Critical Review. Lubricants, 6. 

  60. Wang, Q.J., and Chung, Y.W. (2013). Solid Lubricants for Space Mechanisms. Encyclopedia of Tribology, Springer. 

  61. Miyoshi Aerospace mechanisms and tribology technology-Case study Tribol. Int. 1999 10.1016/S0301-679X(99)00092-4 32 673 

  62. 10.1117/12.789663 Weidlich, K., Fischer, M., Ellenrieder, M.M., Gross, T., Salvignol, J.C., Barho, R., Neugebauer, C., Konigsreiter, G., Trunz, M., and Muller, F. (2008, January 23-28). High-precision cryogenic wheel mechanisms for the JWST NIRSPEC instrument. Proceedings of the International Conference on Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, Marseille, France. 

  63. Gould, S.G., and Roberts, E.W. (1989, January 3-5). The in-vacuo torque performance of dry lubricated ball bearings at cryogenic temperatures. Proceedings of the 23rd Aerospace Mechanisms Symp., Huntsville, AL, USA. 

  64. Neugebauer, C., Supper, L., Watters, R., Roberts, E.W., and Demaret, C. (2009, January 23-25). Nirspec wheel support mechanism’s central duplex bearings cryogenic test results. Proceedings of the 13th ESMATS, Vienna Austria. 

  65. Renevier Coating characteristics and tribological properties of sputter-deposited MoS2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating Surf. Coat. Technol. 2000 10.1016/S0257-8972(00)00538-7 127 24 

  66. Fox Hard lubricating coatings for cutting and forming tools and mechanical components Surf. Coat. Technol. 2000 10.1016/S0257-8972(99)00611-8 125 347 

  67. Teer New solid lubricant coatings Wear 2001 10.1016/S0043-1648(01)00764-5 251 1068 

  68. Mao The rise of two-dimensional MoS2 for catalysis Front. Phys. 2018 10.1007/s11467-018-0812-0 13 138118 

  69. Bernardi Optical and Electronic Properties of Two-Dimensional Layered Materials Nanophotonics 2017 10.1515/nanoph-2015-0030 6 479 

  70. Martin Superlubricity of MoS2: Crystal orientation mechanisms Surf. Coat. Technol. 1994 10.1016/0257-8972(94)90197-X 68 427 

  71. Fleischauer Chemical and Structural Effects on the Lubrication Properties of Sputtered MoS2 Films Tribol. Trans. 1988 10.1080/10402008808981819 31 239 

  72. Baykara Emerging superlubricity: A review of the state of the art and perspectives on future research Appl. Phys. Rev. 2018 10.1063/1.5051445 5 18 

  73. Hirano Atomistic Locking and Friction Phys. Rev. B 1990 10.1103/PhysRevB.41.11837 41 11837 

  74. Sokoloff Theory of energy dissipation in sliding crystal surfaces Phys. Rev. B 1990 10.1103/PhysRevB.42.760 42 760 

  75. Oviedo In Situ TEM Characterization of Shear-Stress-Induced Interlayer Sliding in the Cross Section View of Molybdenum Disulfide ACS Nano 2015 10.1021/nn506052d 9 1543 

  76. 10.1002/adma.201701474 Li, H., Wang, J.H., Gao, S., Chen, Q., Peng, L.M., Liu, K.H., and Wei, X.L. (2017). Superlubricity between MoS2 Monolayers. Adv. Mater., 29. 

  77. Martin Superlubricity: Friction’s vanishing act Phys. Today 2018 10.1063/PT.3.3897 71 40 

  78. Liu Interlayer Friction and Superlubricity in Single-Crystalline Contact Enabled by Two-Dimensional Flake-Wrapped Atomic Force Microscope Tips ACS Nano 2018 10.1021/acsnano.7b09083 12 7638 

  79. Onodera A Computational Chemistry Study on Friction of h-MoS2. Part, I. Mechanism of Single Sheet Lubrication J. Phys. Chem. B 2009 10.1021/jp9069866 113 16526 

  80. Onodera A Computational Chemistry Study on Friction of h-MoS2. Part II. Friction Anisotropy J. Phys. Chem. B 2010 10.1021/jp1064775 114 15832 

  81. Levita Sliding Properties of MoS2 Layers: Load and Interlayer Orientation Effects J. Phys. Chem. C 2014 10.1021/jp4098099 118 13809 

  82. Ye Oscillatory motion in layered materials: Graphene, boron nitride, and molybdenum disulfide Nanotechnology 2015 10.1088/0957-4484/26/16/165701 26 165701 

  83. Hao Property Self-Optimization During Wear of MoS2 ACS Appl. Mater. Interfaces 2017 10.1021/acsami.6b13802 9 1953 

  84. Tedstone Mechanical Properties of Molybdenum Disulfide and the Effect of Doping: An in Situ TEM Study ACS Appl. Mater. Interfaces 2015 10.1021/acsami.5b06055 7 20829 

  85. Stupp Synergistic Effects of Metals Co-Sputtered with MoS2 Metall. Prot. Coat. 1981 84 257 

  86. Deleanu Evaluation of the spread range of 3D parameters for coated surfaces Tribol. Ind. 2011 33 72 

  87. 10.1515/9783110352986-005 Horovistiz, A., Laranjeira, S., and Davim, J.P. (2018). 2. Effect of glass fiber reinforcement and the addition of MoS2 on the tribological behavior of PA66 under dry sliding conditions: A study of distribution of pixel intensity on the counterface. Wear of Composite Materials, De Gruyter. 

  88. Soleimani Quantifying abrasion and micro-pits in polymer wear using image processing techniques Wear 2014 10.1016/j.wear.2014.07.018 319 123 

  89. Binnig Atomic Force Microscope Phys. Rev. Lett. 1986 10.1103/PhysRevLett.56.930 56 930 

  90. Mate Atomic-scale Friction of a Tungsten Tip on a Graphite Surface Phys. Rev. Lett. 1987 10.1103/PhysRevLett.59.1942 59 1942 

  91. Novoselov Electric field effect in atomically thin carbon films Science 2004 10.1126/science.1102896 306 666 

  92. Spear 2D-nanomaterials for controlling friction and wear at interfaces Nano Today 2015 10.1016/j.nantod.2015.04.003 10 301 

  93. Schumacher Influence of humidity on friction measurements of supported MoS2 single layers J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1996 14 1264 

  94. Lee Frictional Characteristics of Atomically Thin Sheets Science 2010 10.1126/science.1184167 328 76 

  95. Filleter Friction and Dissipation in Epitaxial Graphene Films Phys. Rev. Lett. 2009 10.1103/PhysRevLett.102.086102 102 086102 

  96. Ye Effect of roughness on the layer-dependent friction of few-layer graphene Phys. Rev. B 2017 10.1103/PhysRevB.96.115401 96 115401 

  97. Lavini Friction and work function oscillatory behavior for an even and odd number of layers in polycrystalline MoS2 Nanoscale 2018 10.1039/C8NR00238J 10 8304 

  98. Fang Thickness dependent friction on few-layer MoS2, WS2, and WSe2 Nanotechnology 2017 10.1088/1361-6528/aa712b 28 245703 

  99. Cao Anisotropic nanofriction on MoS2 with different thicknesses Tribol. Int. 2019 10.1016/j.triboint.2019.02.010 134 308 

  100. Choi Friction Anisotropy-Driven Domain Imaging on Exfoliated Monolayer Graphene Science 2011 10.1126/science.1207110 333 607 

  101. 10.3390/nano9020293 Cho, D.H., Jung, J., Kim, C., Lee, J., Oh, S.D., Kim, K.S., and Lee, C. (2019). Comparison of Frictional Properties of CVD-Grown MoS2 and Graphene Films under Dry Sliding Conditions. Nanomaterials, 9. 

  102. 10.1021/acs.nanolett.9b02035 Vazirisereshk, M.R., Ye, H., Ye, Z., Otero-de-la-Roza, A., Zhao, M., Gao, Z., Johnson, A.T.C., Johnson, E.R., Carpick, R.W., and Martini, A. (2019). Origin of Nanoscale Friction Contrast between Supported Graphene, MoS2, and a Graphene/MoS2 Heterostructure. Nano Lett., under review. 

  103. Peterson, M.B., and Johnson, R.L. (1953). Friction and Wear Investigation of Molybdenum Disulfide 1: Effect of Moisture, NACA. Technical Note 3055. 

  104. Ross Surface Oxidation of Molybdenum Disulfide J. Phys. Chem. 1955 10.1021/j150531a020 59 889 

  105. Haltner Effect of Water Vapor on Friction of Molybdenum Disulfide Ind. Eng. Chem. Fundam. 1966 10.1021/i160019a010 5 348 

  106. Pardee The Effect of Humidity on Low-Load Frictional Properties of a Bonded Solid Film Lubricant ASLE Trans. 1972 10.1080/05698197208981409 15 130 

  107. Panitz The tribological properties of MoS2 coatings in vacuum, low relative humidity, and high relative humidity environments J. Vac. Sci. Technol. A 1988 10.1116/1.575669 6 1166 

  108. Tagawa Hyperthermal Atomic Oxygen Interaction with MoS2 Lubricants Relevance to Space Environmental Effects in Low Earth Orbit-Atomic Oxygen-Induced Oxidation Tribol. Lett. 2004 10.1007/s11249-004-8094-9 17 859 

  109. Khare The Effects of Environmental Water and Oxygen on the Temperature-Dependent Friction of Sputtered Molybdenum Disulfide Tribol. Lett. 2013 10.1007/s11249-013-0233-8 52 485 

  110. 10.1007/978-94-010-0714-6_5 Tagawa, M., Ikeda, J., Kinoshita, H., Umeno, M., and Ohmae, N. (2001). Effect of Atomic Oxygen Exposures on the Tribological Properties of Molybdenum Disulfide Lubricants. Protection of Space Materials from the Space Environment, Springer. 

  111. 10.1201/9781420027068 Miyoshi, K. (2001). Solid Lubrication Fundamentals and Applications, CRC Press. 

  112. Liang Energetics of Oxidation in MoS2 Nanoparticles by Density Functional Theory J. Phys. Chem. C 2011 10.1021/jp110562n 115 10606 

  113. Johnson, M.R. (1994, January 18-20). The Galileo High Gain Antenna Deployment Anomaly. Proceedings of the 28th Aerospace Mechanisms Symposium, NASA Lewis Research Center, Cleveland, OH, USA. 

  114. Fusaro, R.L. (1978). Lubrication and Failure Mechanisms of Molybdenum Disulfide Films I-Effect of Atmosphere. 

  115. Muratore In situ Raman spectroscopy for examination of high temperature tribological processes Wear 2011 10.1016/j.wear.2010.07.012 270 140 

  116. Spychalski Microscale Insight into Oxidation of Single MoS2 Crystals in Air J. Phys. Chem. C 2017 10.1021/acs.jpcc.7b05405 121 26027 

  117. Windom A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems Tribol. Lett. 2011 10.1007/s11249-011-9774-x 42 301 

  118. Kubart Temperature dependence of tribological properties of MoS2 and MoSe2 coatings Surf. Coat. Technol. 2005 10.1016/j.surfcoat.2004.08.146 193 230 

  119. Sliney, H.E. (1973). High Temperature Solid Lubricants: When and Where to Use Them. 

  120. Yamamoto Anisotropic Etching of Atomically Thin MoS2 J. Phys. Chem. C 2013 10.1021/jp410893e 117 25643 

  121. Zhang Structural, mechanical and tribological properties of Mo-S-N solid lubricant films Surf. Coat. Technol. 2016 10.1016/j.surfcoat.2016.04.040 296 185 

  122. Wang Erosion Mechanism of MoS2-Based Films Exposed to Atomic Oxygen Environments ACS Appl. Mater. Interfaces 2015 10.1021/acsami.5b02709 7 12943 

  123. Curry Highly Oriented MoS2 Coatings: Tribology and Environmental Stability Tribol. Lett. 2016 10.1007/s11249-016-0745-0 64 11 

  124. Curry Impact of Microstructure on MoS2 Oxidation and Friction ACS Appl. Mater. Interfaces 2017 10.1021/acsami.7b06917 9 28019 

  125. Gao Responses of TMDs-metals composite films to atomic oxygen exposure J. Alloy. Compd. 2018 10.1016/j.jallcom.2018.06.311 765 854 

  126. Tagawa Comparison of Macro and Microtribological Property of Molybdenum Disulfide Film Exposed to LEO Space Environment Tribol. Lett. 2012 10.1007/s11249-011-9893-4 45 349 

  127. Tagawa Hyperthermal atomic oxygen interaction with MoS2 lubricants and relevance to space environmental effects in low earth orbit-effects on friction coefficient and wear-life Tribol. Lett. 2005 10.1007/s11249-004-3594-1 18 437 

  128. Wei In Situ Tribological Evaluation of Greases and Solid Lubricants in a Simulated Atomic Oxygen Environment Tribol. Trans. 1995 10.1080/10402009508983492 38 950 

  129. Gao Changes in the composition, structure and friction property of sputtered MoS2 films by LEO environment exposure Appl. Surf. Sci. 2015 10.1016/j.apsusc.2014.12.175 330 30 

  130. Tagawa Space environmental effects on MoS2 and diamond-like carbon lubricating films: Atomic oxygen-induced erosion and its effect on tribological properties Surf. Coat. Technol. 2007 10.1016/j.surfcoat.2007.07.069 202 1003 

  131. Khare Surface and Subsurface Contributions of Oxidation and Moisture to Room Temperature Friction of Molybdenum Disulfide Tribol. Lett. 2014 10.1007/s11249-013-0273-0 53 329 

  132. Stewart Chemistry of sputtered molybdenum disulfide films Inorg. Chem. 1982 10.1021/ic00136a060 21 2426 

  133. Serpini The role of humidity and oxygen on MoS2 thin films deposited by RF PVD magnetron sputtering Surf. Coat. Technol. 2017 10.1016/j.surfcoat.2017.04.006 319 345 

  134. Pritchard The effect of humidity on the friction and life of unbonded molybdenum disulphide films Wear 1969 10.1016/0043-1648(69)90430-X 13 39 

  135. Johnston Water Adsorption on Molybdenum Disulfide Containing Surface Contaminants J. Phys. Chem. 1964 10.1021/j100793a049 68 3399 

  136. Levita Effects of Water Intercalation and Tribochemistry on MoS2 Lubricity: An Ab Initio Molecular Dynamics Investigation Chem. Phys. Chem. 2017 10.1002/cphc.201601143 18 1475 

  137. Lee Nanoscale Friction on Confined Water Layers Intercalated between MoS2 Flakes and Silica J. Phys. Chem. C 2019 10.1021/acs.jpcc.8b11426 123 8827 

  138. Uemura A Mechanism of Vapor Effect on Friction Coefficient of Molybdenum Disulfide Tribol. Trans. 1990 10.1080/10402009008981988 33 551 

  139. Lancaster A review of the influence of environmental humidity and water on friction, lubrication and wear Tribol. Int. 1990 10.1016/0301-679X(90)90053-R 23 371 

  140. Holinski A study of the lubricating mechanism of molybdenum disulfide Wear 1972 10.1016/0043-1648(72)90124-X 19 329 

  141. Zhao The Role of Water in Modifying Friction within MoS2 Sliding Interfaces ACS Appl. Mater. Interfaces 2010 10.1021/am100090t 2 1444 

  142. Ataca Dissociation of H2O at the vacancies of single-layer MoS2 Phys. Rev. B 2012 10.1103/PhysRevB.85.195410 85 195410 

  143. Ghuman Adsorption and Dissociation of H2O on Monolayered MoS2 Edges: Energetics and Mechanism from ab Initio Simulations J. Phys. Chem. C 2015 10.1021/jp510899m 119 6518 

  144. Levita Graphene and MoS2 interacting with water: A comparison by ab initio calculations Carbon 2016 10.1016/j.carbon.2016.06.072 107 878 

  145. Vierneusel Humidity resistant MoS2 coatings deposited by unbalanced magnetron sputtering Surf. Coat. Technol. 2013 10.1016/j.surfcoat.2013.07.019 235 97 

  146. Muratore Control of molybdenum disulfide basal plane orientation during coating growth in pulsed magnetron sputtering discharges Thin Solid Films 2009 10.1016/j.tsf.2009.01.190 517 5605 

  147. 10.3390/lubricants4030032 Gradt, T., and Schneider, T. (2016). Tribological Performance of MoS2 Coatings in Various Environments. Lubricants, 4. 

  148. Chhowalla Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear Nature 2000 10.1038/35025020 407 164 

  149. Kohli Contact Pressure Dependency in Frictional Behavior of Burnished Molybdenum Disulphide Coatings Tribol. Trans. 2001 10.1080/10402000108982439 44 147 

  150. Sliney Solid lubricant materials for high temperatures-A review Tribol. Int. 1982 10.1016/0301-679X(82)90089-5 15 303 

  151. Colbert Thermal dependence of the wear of molybdenum disulphide coatings Wear 2010 10.1016/j.wear.2010.07.008 269 719 

  152. Dunckle Friction of molybdenum disulfide-titanium films under cryogenic vacuum conditions Tribol. Int. 2011 10.1016/j.triboint.2011.07.010 44 1819 

  153. Zhao Transition from Thermal to Athermal Friction under Cryogenic Conditions Phys. Rev. Lett. 2009 10.1103/PhysRevLett.102.186102 102 186102 

  154. Curry Atomistic Origins of Temperature-Dependent Shear Strength in 2D Materials ACS Appl. Nano Mater. 2018 10.1021/acsanm.8b01454 1 5401 

  155. Curry Temperature-Dependent Friction and Wear of MoS2/Sb2O3/Au Nanocomposites Tribol. Lett. 2016 10.1007/s11249-016-0748-x 64 18 

  156. Babuska Temperature-Dependent Friction and Wear Behavior of PTFE and MoS2 Tribol. Lett. 2016 10.1007/s11249-016-0702-y 63 15 

  157. Hamilton A Possible Link Between Macroscopic Wear and Temperature Dependent Friction Behaviors of MoS2 Coatings Tribol. Lett. 2008 10.1007/s11249-008-9366-6 32 91 

  158. Seitzman Effects of temperature and ion-to-atom ratio on the orientation of IBAD MoS2 coatings Thin Solid Films 1995 10.1016/0040-6090(94)06419-9 260 143 

  159. Moser Composition and growth mode of MoSx sputtered films J. Vac. Sci. Technol. A 1994 10.1116/1.579157 12 494 

  160. Zabinski Synthesis and characterization of a high-temperature oxide lubricant J. Mater. Sci. 1994 10.1007/BF00366870 29 5875 

  161. Muratore Molybdenum disulfide as a lubricant and catalyst in adaptive nanocomposite coatings Surf. Coat. Technol. 2006 10.1016/j.surfcoat.2006.08.014 201 4125 

  162. Aouadi Tribological investigation of adaptive Mo2N/MoS2/Ag coatings with high sulfur content Surf. Coat. Technol. 2009 10.1016/j.surfcoat.2008.10.040 203 1304 

  163. Chen Friction and Wear Behaviors of Ag/MoS2/G Composite in Different Atmospheres and at Different Temperatures Tribol. Lett. 2012 10.1007/s11249-012-9970-3 47 139 

  164. Voevodin Hard coatings with high temperature adaptive lubrication and contact thermal management: Review Surf. Coat. Technol. 2014 10.1016/j.surfcoat.2014.04.046 257 247 

  165. Yang Influence of service temperature on tribological characteristics of self-lubricant coatings: A review Front. Mater. Sci. 2013 10.1007/s11706-013-0190-z 7 28 

  166. Aouadi Lubricious oxide coatings for extreme temperature applications: A review Surf. Coat. Technol. 2014 10.1016/j.surfcoat.2014.05.064 257 266 

  167. Aouadi Progress in the development of adaptive nitride-based coatings for high temperature tribological applications Surf. Coat. Technol. 2009 10.1016/j.surfcoat.2009.04.010 204 962 

  168. Muratore Chameleon Coatings: Adaptive Surfaces to Reduce Friction and Wear in Extreme Environments Annu. Rev. Mater. Res. 2009 10.1146/annurev-matsci-082908-145259 39 297 

  169. Zhang Carbon Nanotube−MoS2 Composites as Solid Lubricants ACS Appl. Mater. Interfaces 2009 10.1021/am800240e 1 735 

  170. Voevodin Nanocomposite tribological coatings with “chameleon” surface adaptation J. Vac. Sci. Technol. A 2002 10.1116/1.1487875 20 1434 

  171. Baker Preparation of chameleon coatings for space and ambient environments Thin Solid Films 2007 10.1016/j.tsf.2007.02.005 515 6737 

  172. Torres Tribological behaviour of self-lubricating materials at high temperatures Int. Mater. Rev. 2018 10.1080/09506608.2017.1410944 63 309 

  173. Liu MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction Nat. Chem. 2017 10.1038/nchem.2740 9 810 

  174. Ivanovskaya Ab initio study of bilateral doping within the MoS2-NbS2 system Phys. Rev. B 2008 10.1103/PhysRevB.78.134104 78 134104 

  175. Tedstone Synthesis, Properties, and Applications of Transition Metal-Doped Layered Transition Metal Dichalcogenides Chem. Mater. 2016 10.1021/acs.chemmater.6b00430 28 1965 

  176. Kutana Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying Nanoscale 2014 10.1039/C4NR00177J 6 5820 

  177. Dolui Possible doping strategies for MoS2 monolayers: An ab initio study Phys. Rev. B 2013 10.1103/PhysRevB.88.075420 88 075420 

  178. Deng Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping Energy Environ. Sci. 2015 10.1039/C5EE00751H 8 1594 

  179. Hakala Hydrogen adsorption on doped MoS2 nanostructures Sci. Rep. 2017 10.1038/s41598-017-15622-z 7 15243 

  180. Benavente Intercalation chemistry of molybdenum disulfide Coord. Chem. Rev. 2002 10.1016/S0010-8545(01)00392-7 224 87 

  181. Suh Reconfiguring crystal and electronic structures of MoS2 by substitutional doping Nat. Commun. 2018 10.1038/s41467-017-02631-9 9 199 

  182. 10.1021/acsnano.9b02528 Kondekar, N., Boebinger, M.G., Tian, M., Kirmani, M.H., and McDowell, M.T. (2019). The Effect of Nickel on MoS2 Growth Revealed with in Situ Transmission Electron Microscopy. ACS Nano. 

  183. Lince Metal incorporation in sputter-deposited MoS2 films studied by extended x-ray absorption fine structure J. Mater. Res. 1995 10.1557/JMR.1995.2091 10 2091 

  184. Shi Energy Level Engineering of MoS2 by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction J. Am. Chem. Soc. 2017 10.1021/jacs.7b08881 139 15479 

  185. Hallam Rhenium-doped MoS2 films Appl. Phys. Lett. 2017 10.1063/1.4995220 111 203101 

  186. Lin Properties of Individual Dopant Atoms in Single-Layer MoS2: Atomic Structure, Migration, and Enhanced Reactivity Adv. Mater. 2014 10.1002/adma.201304985 26 2857 

  187. Suh Doping against the Native Propensity of MoS2: Degenerate Hole Doping by Cation Substitution Nano Lett. 2014 10.1021/nl503251h 14 6976 

  188. Jain Formation enthalpies by mixing GGA and GGA plus U calculations Phys. Rev. B 2011 10.1103/PhysRevB.84.045115 84 045115 

  189. Lieber Characterization of the structural, electronic and tribological properties of metal dichalcogenides by scanning probe microscopies Thin Solid Films 1991 10.1016/0040-6090(91)90450-C 206 355 

  190. Lauritsen Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts J. Catal. 2007 10.1016/j.jcat.2007.04.013 249 220 

  191. Lewis Thin Films of Molybdenum Disulfide Doped with Chromium by Aerosol-Assisted Chemical Vapor Deposition (AACVD) Chem. Mater. 2015 10.1021/cm504532w 27 1367 

  192. Xie Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution J. Am. Chem. Soc. 2013 10.1021/ja408329q 135 17881 

  193. Neal P-type conduction in two-dimensional MoS2 via oxygen incorporation Appl. Phys. Lett. 2017 10.1063/1.4983092 110 193103 

  194. Yang Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2 Nano Lett. 2014 10.1021/nl502603d 14 6275 

  195. Liu The origin of the enhanced performance of nitrogen-doped MoS2 in lithium ion batteries Nanotechnology 2016 10.1088/0957-4484/27/17/175402 27 175402 

  196. Kim Site Selective Doping of Ultrathin Metal Dichalcogenides by Laser-Assisted Reaction Adv. Mater. 2016 10.1002/adma.201503945 28 341 

  197. Zabinski The Effects of Dopants on the Chemistry and Tribology of Sputter-Deposited MoS2 Films Tribol. Trans. 1995 10.1080/10402009508983486 38 894 

  198. Simmonds Mechanical and tribological performance of MoS2 co-sputtered composites Surf. Coat. Technol. 2000 10.1016/S0257-8972(00)00521-1 126 15 

  199. Nainaparampil Pulsed laser-ablated MoS2-Al films: Friction and wear in humid conditions Surf. Coat. Technol. 2004 10.1016/j.surfcoat.2004.02.043 187 326 

  200. Ye Microstructure and tribological properties of MoS2 +Zr composite coatings in high humidity environment Appl. Surf. Sci. 2016 10.1016/j.apsusc.2016.01.163 367 140 

  201. Stoyanov Microtribological Performance of Au-MoS2 and Ti-MoS2 Coatings with Varying Contact Pressure Tribol. Lett. 2010 10.1007/s11249-010-9657-6 40 199 

  202. Paul, A., Singh, H., Mutyala, K.C., and Doll, G.L. (2018, January 16-18). An Improved Solid Lubricant for Bearings Operating in Space and Terrestrial Environments. Proceedings of the 44th Aerospace Mechanisms Symposium, NASA Glenn Research Center, Cleveland, OH, USA. NASA/CP-2018-219887. 

  203. Li Exploring the Tribophysics and Tribochemistry of MoS2 by Sliding MoS2/Ti Composite Coating Under Different Humidity Tribol. Lett. 2017 10.1007/s11249-017-0824-x 65 38 

  204. Spalvins Frictional and Morphological Properties of Au-MoS2 Films Sputtered from a Compact Target Metall. Prot. Coat. 1984 118 375 

  205. Scharf Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings Acta Mater. 2010 10.1016/j.actamat.2010.03.040 58 4100 

  206. Scharf Synthesis of Au-MoS2 nanocomposites: Thermal and friction-induced changes to the structure ACS Appl. Mater. Interfaces 2013 10.1021/am4034476 5 11762 

  207. Lince Nanostructural, electrical, and tribological properties of composite Au-MoS2 coatings Thin Solid Films 2009 10.1016/j.tsf.2009.03.210 517 5516 

  208. Ding Tribological properties of Cr- and Ti-doped MoS2 composite coatings under different humidity atmosphere Surf. Coat. Technol. 2010 10.1016/j.surfcoat.2010.06.041 205 224 

  209. Singh Tribological Performance and Coating Characteristics of Sputter-Deposited Ti-Doped MoS2in Rolling and Sliding Contact Tribol. Trans. 2015 10.1080/10402004.2015.1015758 58 767 

  210. Hsu Titanium-doped molybdenum disulfide nanostructures Adv. Funct. Mater. 2001 10.1002/1616-3028(200102)11:1<69::AID-ADFM69>3.0.CO;2-D 11 69 

  211. Singh An atom probe tomography investigation of Ti-MoS2 and MoS2-Sb2O3-Au films J. Mater. Res. 2017 10.1557/jmr.2017.35 32 1710 

  212. Li The role of tribo-pairs in modifying the tribological behavior of the MoS2/Ti composite coating J. Phys. D Appl. Phys. 2016 10.1088/0022-3727/49/9/095501 49 095501 

  213. Lince Tribology of co-sputtered nanocomposite Au/MoS2 solid lubricant films over a wide contact stress range Tribol. Lett. 2004 10.1023/B:TRIL.0000044490.03462.6e 17 419 

  214. Singh An investigation of material and tribological properties of Sb2O3/Au-doped MoS2 solid lubricant films under sliding and rolling contact in different environments Surf. Coat. Technol. 2015 10.1016/j.surfcoat.2015.05.049 284 281 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로