$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria 원문보기

Microorganisms, v.8 no.12, 2020년, pp.1849 -   

Jeong, Yujin (Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea) ,  Cho, Sang-Hyeok (mist@kaist.ac.kr (Y.J.)) ,  Lee, Hookeun (graysky@kaist.ac.kr (S.-H.C.)) ,  Choi, Hyung-Kyoon (Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea) ,  Kim, Dong-Myung (mist@kaist.ac.kr (Y.J.)) ,  Lee, Choul-Gyun (graysky@kaist.ac.kr (S.-H.C.)) ,  Cho, Suhyung (Institute of Pharmaceutical Research, College of Pharmacy, Gachon University, Incheon 21999, Korea) ,  Cho, Byung-Kwan (hklee@gachon.ac.kr)

Abstract AI-Helper 아이콘AI-Helper

Cyanobacteria, given their ability to produce various secondary metabolites utilizing solar energy and carbon dioxide, are a potential platform for sustainable production of biochemicals. Until now, conventional metabolic engineering approaches have been applied to various cyanobacterial species for...

Keyword

참고문헌 (212)

  1. 1. Singh J.S. Kumar A. Rai A.N. Singh D.P. Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability Front. Microbiol. 2016 7 529 10.3389/fmicb.2016.00529 27148218 

  2. 2. Mogany T. Swalaha F.M. Kumari S. Bux F. Elucidating the role of nutrients in C-phycocyanin production by the halophilic cyanobacterium Euhalothece sp. J. Appl. Phycol. 2018 30 2259 2271 10.1007/s10811-018-1477-3 

  3. 3. Liang C. Zhao F. Wei W. Wen Z. Qin S. Carotenoid biosynthesis in cyanobacteria: Structural and evolutionary scenarios based on comparative genomics Int. J. Biol. Sci. 2006 2 197 10.7150/ijbs.2.197 16967101 

  4. 4. Lee H.J. Lee J. Lee S.-M. Um Y. Kim Y. Sim S.J. Choi J.-I. Woo H.M. Direct conversion of CO2 to α-farnesene using metabolically engineered Synechococcus elongatus PCC 7942 J. Agric. Food Chem. 2017 65 10424 10428 10.1021/acs.jafc.7b03625 29068210 

  5. 5. Kanno M. Carroll A.L. Atsumi S. Global metabolic rewiring for improved CO 2 fixation and chemical production in cyanobacteria Nat. Commun. 2017 8 14724 10.1038/ncomms14724 28287087 

  6. 6. Gao X. Gao F. Liu D. Zhang H. Nie X. Yang C. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO 2 Energy Environ. Sci. 2016 9 1400 1411 10.1039/C5EE03102H 

  7. 7. Stephanopoulos G. Synthetic biology and metabolic engineering ACS Synth. Biol. 2012 1 514 525 10.1021/sb300094q 23656228 

  8. 8. Ramey C.J. Baron-Sola A.N. Aucoin H.R. Boyle N.R. Genome engineering in cyanobacteria: Where we are and where we need to go ACS Synth. Biol. 2015 4 1186 1196 10.1021/acssynbio.5b00043 25985322 

  9. 9. Lin W.-R. Tan S.-I. Hsiang C.-C. Sung P.-K. Ng I.-S. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery Bioresour. Technol. 2019 291 121932 10.1016/j.biortech.2019.121932 31387837 

  10. 10. Broddrick J.T. Rubin B.E. Welkie D.G. Du N. Mih N. Diamond S. Lee J.J. Golden S.S. Palsson B.O. Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis Proc. Natl. Acad. Sci. USA 2016 113 E8344 E8353 10.1073/pnas.1613446113 27911809 

  11. 11. Kultschar B. Llewellyn C. Secondary metabolites in cyanobacteria Secondary Metabolites―Sources and Applications IntechOpen London, UK 2018 23 36 

  12. 12. Romay C. Armesto J. Remirez D. Gonzalez R. Ledon N. Garcia I. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae Inflamm. Res. 1998 47 36 41 10.1007/s000110050256 9495584 

  13. 13. Romay C. Gonzalez R. Ledon N. Remirez D. Rimbau V. C-phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects Curr. Protein Pept. Sci. 2003 4 207 216 10.2174/1389203033487216 12769719 

  14. 14. Benedetti S. Benvenuti F. Pagliarani S. Francogli S. Scoglio S. Canestrari F. Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae Life Sci. 2004 75 2353 2362 10.1016/j.lfs.2004.06.004 15350832 

  15. 15. Kuddus M. Singh P. Thomas G. Al-Hazimi A. Recent developments in production and biotechnological applications of C-phycocyanin BioMed Res. Int. 2013 2013 742859 10.1155/2013/742859 24063013 

  16. 16. Patel A. Mishra S. Ghosh P.K. Antioxidant potential of C-phycocyanin isolated from cyanobacterial species Lyngbya , Phormidium and Spirulina spp. Indian J. Biochem. Biophys. 2006 43 25 31 16955748 

  17. 17. Stahl W. Sies H. Antioxidant activity of carotenoids Mol. Asp. Med. 2003 24 345 351 10.1016/S0098-2997(03)00030-X 

  18. 18. Wada N. Sakamoto T. Matsugo S. Multiple roles of photosynthetic and sunscreen pigments in cyanobacteria focusing on the oxidative stress Metabolites 2013 3 463 483 10.3390/metabo3020463 24958001 

  19. 19. Fagundes M.B. Falk R.B. Facchi M.M.X. Vendruscolo R.G. Maroneze M.M. Zepka L.Q. Jacob-Lopes E. Wagner R. Insights in cyanobacteria lipidomics: A sterols characterization from Phormidium autumnale biomass in heterotrophic cultivation Food Res. Int. 2019 119 777 784 10.1016/j.foodres.2018.10.060 30884716 

  20. 20. Kellmann R. Mihali T.K. Neilan B.A. Identification of a saxitoxin biosynthesis gene with a history of frequent horizontal gene transfers J. Mol. Evol. 2008 67 526 538 10.1007/s00239-008-9169-2 18850059 

  21. 21. Mihali T.K. Kellmann R. Neilan B.A. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5 BMC Biochem. 2009 10 8 10.1186/1471-2091-10-8 19331657 

  22. 22. Murray S.A. Wiese M. Stuken A. Brett S. Kellmann R. Hallegraeff G. Neilan B.A. sxtA -based quantitative molecular assay to identify saxitoxin-producing harmful algal blooms in marine waters Appl. Environ. Microbiol. 2011 77 7050 7057 10.1128/AEM.05308-11 21841034 

  23. 23. Burja A.M. Banaigs B. Abou-Mansour E. Burgess J.G. Wright P.C.J.T. Marine cyanobacteria―A prolific source of natural products Tetrahedron 2001 57 9347 9377 10.1016/S0040-4020(01)00931-0 

  24. 24. Rastogi R.P. Sonani R.R. Madamwar D. Cyanobacterial sunscreen scytonemin: Role in photoprotection and biomedical research Appl. Biochem. Biotechnol. 2015 176 1551 1563 10.1007/s12010-015-1676-1 26013282 

  25. 25. Garcia-Pichel F. Castenholz R.W.J.J.O.P. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment J. Phycol. 1991 27 395 409 10.1111/j.0022-3646.1991.00395.x 

  26. 26. Proteau P.J. Gerwick W.H. Garcia-Pichel F. Castenholz R. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria Experientia 1993 49 825 829 10.1007/BF01923559 8405307 

  27. 27. Soule T. Stout V. Swingley W.D. Meeks J.C. Garcia-Pichel F. Molecular genetics and genomic analysis of scytonemin biosynthesis in Nostoc punctiforme ATCC 29133 J. Bacteriol. 2007 189 4465 4472 10.1128/JB.01816-06 17351042 

  28. 28. Klein D. Daloze D. Braekman J.C. Hoffmann L. Demoulin V. New hapalindoles from the cyanophyte Hapalosiphon laingii J. Nat. Prod. 1995 58 1781 1785 10.1021/np50125a025 

  29. 29. Moore R.E. Cheuk C. Patterson G.M.L. Hapalindoles: New alkaloids from the blue-green alga Hapalosiphon fontinalis J. Am. Chem. Soc. 1984 106 6456 6457 10.1021/ja00333a079 

  30. 30. Mejean A. Mann S. Maldiney T. Vassiliadis G. Lequin O. Ploux O. Evidence that biosynthesis of the neurotoxic alkaloids anatoxin-a and homoanatoxin-a in the cyanobacterium Oscillatoria PCC 6506 occurs on a modular polyketide synthase initiated by L-proline J. Am. Chem. Soc. 2009 131 7512 7513 10.1021/ja9024353 19489636 

  31. 31. Rantala-Ylinen A. Kana S. Wang H. Rouhiainen L. Wahlsten M. Rizzi E. Berg K. Gugger M. Sivonen K. Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers Appl. Environ. Microbiol. 2011 77 7271 7278 10.1128/AEM.06022-11 21873484 

  32. 32. Moore R.E. Blackman A.J. Cheuk C.E. Mynderse J.S. Matsumoto G.K. Clardy J. Woodard R.W. Craig J.C. Absolute stereochemistries of the aplysiatoxins and oscillatoxin A J. Org. Chem. 1984 49 2484 2489 10.1021/jo00187a035 

  33. 33. Gupta D.K. Kaur P. Leong S.T. Tan L.T. Prinsep M.R. Chu J.J. Anti-Chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium Trichodesmium erythraeum Mar. Drugs 2014 12 115 127 10.3390/md12010115 24394406 

  34. 34. Edwards D.J. Gerwick W.H. Lyngbyatoxin biosynthesis: Sequence of biosynthetic gene cluster and identification of a novel aromatic prenyltransferase J. Am. Chem. Soc. 2004 126 11432 11433 10.1021/ja047876g 15366877 

  35. 35. Mihali T.K. Kellmann R. Muenchhoff J. Barrow K.D. Neilan B.A. Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis Appl. Environ. Microbiol. 2008 74 716 722 10.1128/AEM.01988-07 18065631 

  36. 36. Stuken A. Jakobsen K.S. The cylindrospermopsin gene cluster of Aphanizomenon sp. strain 10E6: Organization and recombination Microbiology (Reading) 2010 156 2438 2451 10.1099/mic.0.036988-0 20430808 

  37. 37. Mazmouz R. Chapuis-Hugon F. Mann S. Pichon V. Mejean A. Ploux O. Biosynthesis of cylindrospermopsin and 7-epicylindrospermopsin in Oscillatoria sp. strain PCC 6506: Identification of the cyr gene cluster and toxin analysis Appl. Environ. Microbiol. 2010 76 4943 4949 10.1128/AEM.00717-10 20525864 

  38. 38. Gross E.M. Wolk C.P. Juttner F. Fischerellin, a new allelochemical from the freshwater cyanobacterium Fischerella Muscicola J. Phycol. 1991 27 686 692 10.1111/j.0022-3646.1991.00686.x 

  39. 39. Cox P.A. Banack S.A. Murch S.J. Rasmussen U. Tien G. Bidigare R.R. Metcalf J.S. Morrison L.F. Codd G.A. Bergman B. Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid Proc. Natl. Acad. Sci. USA 2005 102 5074 5078 10.1073/pnas.0501526102 15809446 

  40. 40. Rounge T.B. Rohrlack T. Nederbragt A.J. Kristensen T. Jakobsen K.S. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain BMC Genom. 2009 10 396 10.1186/1471-2164-10-396 

  41. 41. Tooming-Klunderud A. Rohrlack T. Shalchian-Tabrizi K. Kristensen T. Jakobsen K.S. Structural analysis of a non-ribosomal halogenated cyclic peptide and its putative operon from Microcystis : Implications for evolution of cyanopeptolins Microbiology (Reading) 2007 153 1382 1393 10.1099/mic.0.2006/001123-0 17464052 

  42. 42. Tillett D. Dittmann E. Erhard M. von Dohren H. Borner T. Neilan B.A. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: An integrated peptide-polyketide synthetase system Chem. Biol. 2000 7 753 764 10.1016/S1074-5521(00)00021-1 11033079 

  43. 43. Kaneko T. Nakajima N. Okamoto S. Suzuki I. Tanabe Y. Tamaoki M. Nakamura Y. Kasai F. Watanabe A. Kawashima K. Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843 DNA Res. 2007 14 247 256 10.1093/dnares/dsm026 18192279 

  44. 44. Rouhiainen L. Vakkilainen T. Siemer B.L. Buikema W. Haselkorn R. Sivonen K. Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90 Appl. Environ. Microbiol. 2004 70 686 692 10.1128/AEM.70.2.686-692.2004 14766543 

  45. 45. Christiansen G. Fastner J. Erhard M. Borner T. Dittmann E. Microcystin biosynthesis in planktothrix : Genes, evolution, and manipulation J. Bacteriol. 2003 185 564 572 10.1128/JB.185.2.564-572.2003 12511503 

  46. 46. Moffitt M.C. Neilan B.A. Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins Appl. Environ. Microbiol. 2004 70 6353 6362 10.1128/AEM.70.11.6353-6362.2004 15528492 

  47. 47. Grindberg R.V. Ishoey T. Brinza D. Esquenazi E. Coates R.C. Liu W.T. Gerwick L. Dorrestein P.C. Pevzner P. Lasken R. Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage PLoS ONE 2011 6 e18565 10.1371/journal.pone.0018565 21533272 

  48. 48. Ishida K. Christiansen G. Yoshida W.Y. Kurmayer R. Welker M. Valls N. Bonjoch J. Hertweck C. Borner T. Hemscheidt T. Biosynthesis and structure of aeruginoside 126A and 126B, cyanobacterial peptide glycosides bearing a 2-carboxy-6-hydroxyoctahydroindole moiety Chem. Biol. 2007 14 565 576 10.1016/j.chembiol.2007.04.006 17524987 

  49. 49. Ishida K. Welker M. Christiansen G. Cadel-Six S. Bouchier C. Dittmann E. Hertweck C. Tandeau de Marsac N. Plasticity and evolution of aeruginosin biosynthesis in cyanobacteria Appl. Environ. Microbiol. 2009 75 2017 2026 10.1128/AEM.02258-08 19201978 

  50. 50. Magarvey N.A. Beck Z.Q. Golakoti T. Ding Y. Huber U. Hemscheidt T.K. Abelson D. Moore R.E. Sherman D.H. Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from cyanobionts ACS Chem. Biol. 2006 1 766 779 10.1021/cb6004307 17240975 

  51. 51. Fewer D.P. Osterholm J. Rouhiainen L. Jokela J. Wahlsten M. Sivonen K. Nostophycin biosynthesis is directed by a hybrid polyketide synthase-nonribosomal peptide synthetase in the toxic cyanobacterium Nostoc sp. strain 152 Appl. Environ. Microbiol. 2011 77 8034 8040 10.1128/AEM.05993-11 21948844 

  52. 52. Chang Z. Sitachitta N. Rossi J.V. Roberts M.A. Flatt P.M. Jia J. Sherman D.H. Gerwick W.H. Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula J. Nat. Prod. 2004 67 1356 1367 10.1021/np0499261 15332855 

  53. 53. Ramaswamy A.V. Sorrels C.M. Gerwick W.H. Cloning and biochemical characterization of the hectochlorin biosynthetic gene cluster from the marine cyanobacterium Lyngbya majuscula J. Nat. Prod. 2007 70 1977 1986 10.1021/np0704250 18001088 

  54. 54. Edwards D.J. Marquez B.L. Nogle L.M. McPhail K. Goeger D.E. Roberts M.A. Gerwick W.H. Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula Chem. Biol. 2004 11 817 833 10.1016/j.chembiol.2004.03.030 15217615 

  55. 55. Nogle L.M. Williamson R.T. Gerwick W.H. Somamides A and B, two new depsipeptide analogues of dolastatin 13 from a Fijian cyanobacterial assemblage of Lyngbya majuscula and Schizothrix species J. Nat. Prod. 2001 64 716 719 10.1021/np000634j 11421730 

  56. 56. Nogle L.M. Gerwick W.H. Isolation of four new cyclic depsipeptides, antanapeptins A-D, and dolastatin 16 from a Madagascan collection of Lyngbya majuscula J. Nat. Prod. 2002 65 21 24 10.1021/np010348n 11809058 

  57. 57. Berman F.W. Gerwick W.H. Murray T.F. Antillatoxin and kalkitoxin, ichthyotoxins from the tropical cyanobacterium Lyngbya majuscula , induce distinct temporal patterns of NMDA receptor-mediated neurotoxicity Toxicon 1999 37 1645 1648 10.1016/S0041-0101(99)00108-7 10482399 

  58. 58. McPhail K.L. Correa J. Linington R.G. Gonzalez J. Ortega-Barria E. Capson T.L. Gerwick W.H. Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula J. Nat. Prod. 2007 70 984 988 10.1021/np0700772 17441769 

  59. 59. Hooper G.J. Orjala J. Schatzman R.C. Gerwick W.H. Carmabins A and B, new lipopeptides from the Caribbean cyanobacterium Lyngbya majuscula J. Nat. Prod. 1998 61 529 533 10.1021/np970443p 9584405 

  60. 60. Choi H. Mevers E. Byrum T. Valeriote F.A. Gerwick W.H. Lyngbyabellins K-N from two palmyra atoll collections of the marine cyanobacterium Moorea bouillonii Eur. J. Org. Chem. 2012 2012 5141 5150 10.1002/ejoc.201200691 

  61. 61. Han B. McPhail K.L. Gross H. Goeger D.E. Mooberry S.L. Gerwick W.H.J.T. Isolation and structure of five lyngbyabellin derivatives from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula Tetrahedron 2005 61 11723 11729 10.1016/j.tet.2005.09.036 

  62. 62. Schmidt E.W. Nelson J.T. Rasko D.A. Sudek S. Eisen J.A. Haygood M.G. Ravel J. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni , the cyanobacterial symbiont of Lissoclinum patella Proc. Natl. Acad. Sci. USA 2005 102 7315 7320 10.1073/pnas.0501424102 15883371 

  63. 63. Ziemert N. Ishida K. Quillardet P. Bouchier C. Hertweck C. de Marsac N.T. Dittmann E. Microcyclamide biosynthesis in two strains of Microcystis aeruginosa : From structure to genes and vice versa Appl. Environ. Microbiol. 2008 74 1791 1797 10.1128/AEM.02392-07 18245249 

  64. 64. Philmus B. Christiansen G. Yoshida W.Y. Hemscheidt T.K. Post-translational modification in microviridin biosynthesis Chembiochem 2008 9 3066 3073 10.1002/cbic.200800560 19035375 

  65. 65. Balskus E.P. Walsh C.T. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria Science 2010 329 1653 1656 10.1126/science.1193637 20813918 

  66. 66. Tan L.T. Chang Y.Y. Ashootosh T. Besarhanamides A and B from the marine cyanobacterium Lyngbya majuscula Phytochemistry 2008 69 2067 2069 10.1016/j.phytochem.2008.04.021 18514238 

  67. 67. Essack M. Alzubaidy H.S. Bajic V.B. Archer J.A. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry Toxins (Basel) 2014 6 3058 3076 10.3390/toxins6113058 25356733 

  68. 68. Stewart I. Schluter P.J. Shaw G.R. Cyanobacterial lipopolysaccharides and human health―A review Environ. Health 2006 5 7 10.1186/1476-069X-5-7 16563160 

  69. 69. Chirasuwan N. Chaiklahan R. Ruengjitchatchawalya M. Bunnag B. Tanticharoen M.J.A. Resources N. Anti HSV-1 activity of Spirulina platensis polysaccharide Kasetsart J. (Nat. Sci.) 2007 41 311 318 

  70. 70. de Jesus Raposo M.F. De Morais A.M.B. De Morais R.M.S.C. Marine polysaccharides from algae with potential biomedical applications Mar. Drugs 2015 13 2967 3028 10.3390/md13052967 25988519 

  71. 71. Delattre C. Pierre G. Laroche C. Michaud P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides Biotechnol. Adv. 2016 34 1159 1179 10.1016/j.biotechadv.2016.08.001 27530696 

  72. 72. Moore R.E. Toxins, anticancer agents, and tumor promoters from marine prokaryotes Pure Appl. Chem. 1982 54 1919 1934 10.1351/pac198254101919 

  73. 73. Banker R. Carmeli S. Tenuecyclamides A?D, cyclic hexapeptides from the cyanobacterium Nostoc spongiaeforme var tenue. J. Nat. Prod. 1998 61 1248 1251 10.1021/np980138j 9784161 

  74. 74. Blin K. Shaw S. Steinke K. Villebro R. Ziemert N. Lee S.Y. Medema M.H. Weber T. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline Nucleic Acids Res. 2019 47 W81 W87 10.1093/nar/gkz310 31032519 

  75. 75. Gershenzon J. Dudareva N. The function of terpene natural products in the natural world Nat. Chem. Biol. 2007 3 408 414 10.1038/nchembio.2007.5 17576428 

  76. 76. Pattanaik B. Lindberg P. Terpenoids and their biosynthesis in cyanobacteria Life 2015 5 269 293 10.3390/life5010269 25615610 

  77. 77. Belin B.J. Busset N. Giraud E. Molinaro A. Silipo A. Newman D.K. Hopanoid lipids: From membranes to plant?bacteria interactions Nat. Rev. Microbiol. 2018 16 304 10.1038/nrmicro.2017.173 29456243 

  78. 78. Takaichi S. Mochimaru M. Carotenoids and carotenogenesis in cyanobacteria: Unique ketocarotenoids and carotenoid glycosides Cell. Mol. Life Sci. 2007 64 2607 10.1007/s00018-007-7190-z 17643187 

  79. 79. Prasanna R. Sood A. Jaiswal P. Nayak S. Gupta V. Chaudhary V. Joshi M. Natarajan C. Rediscovering cyanobacteria as valuable sources of bioactive compounds Appl. Biochem. Microbiol. 2010 46 119 134 10.1134/S0003683810020018 

  80. 80. Na S.I. Kim Y.O. Yoon S.H. Ha S.M. Baek I. Chun J. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction J. Microbiol. 2018 56 280 285 10.1007/s12275-018-8014-6 29492869 

  81. 81. Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies Bioinformatics 2014 30 1312 1313 10.1093/bioinformatics/btu033 24451623 

  82. 82. Mejean A. Mann S. Vassiliadis G. Lombard B. Loew D. Ploux O. In vitro reconstitution of the first steps of anatoxin-a biosynthesis in Oscillatoria PCC 6506: From free L-proline to acyl carrier protein bound dehydroproline Biochemistry 2010 49 103 113 10.1021/bi9018785 19954230 

  83. 83. Dittmann E. Gugger M. Sivonen K. Fewer D.P. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria Trends Microbiol. 2015 23 642 652 10.1016/j.tim.2015.07.008 26433696 

  84. 84. Balskus E.P. Walsh C.T. Investigating the initial steps in the biosynthesis of cyanobacterial sunscreen scytonemin J. Am. Chem. Soc. 2008 130 15260 15261 10.1021/ja807192u 18954141 

  85. 85. Ansari M.Z. Yadav G. Gokhale R.S. Mohanty D. NRPS-PKS: A knowledge-based resource for analysis of NRPS/PKS megasynthases Nucleic Acids Res. 2004 32 W405 W413 10.1093/nar/gkh359 15215420 

  86. 86. Mejean A. Ploux O. A genomic view of secondary metabolite production in cyanobacteria Advances in Botanical Research Elsevier Amsterdam, The Netherlands 2013 Volume 65 189 234 

  87. 87. Arnison P.G. Bibb M.J. Bierbaum G. Bowers A.A. Bugni T.S. Bulaj G. Camarero J.A. Campopiano D.J. Challis G.L. Clardy J. Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature Nat. Prod. Rep. 2013 30 108 160 10.1039/C2NP20085F 23165928 

  88. 88. Montalban-Lopez M. Scott T.A. Ramesh S. Rahman I.R. van Heel A.J. Viel J.H. Bandarian V. Dittmann E. Genilloud O. Goto Y. New developments in RiPP discovery, enzymology and engineering Nat. Prod. Rep. 2020 10.1039/D0NP00027B 

  89. 89. Han B. McPhail K.L. Ligresti A. Di Marzo V. Gerwick W.H. Semiplenamides A?G, Fatty acid amides from a Papua New Guinea collection of the marina cyanobacterium Lyngbya semiplena J. Nat. Prod. 2003 66 1364 1368 10.1021/np030242n 14575438 

  90. 90. Chi Z. Su C. Lu W. A new exopolysaccharide produced by marine Cyanothece sp. 113 Bioresour. Technol. 2007 98 1329 1332 10.1016/j.biortech.2006.05.001 16782333 

  91. 91. Markou G. Nerantzis E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions Biotechnol. Adv. 2013 31 1532 1542 10.1016/j.biotechadv.2013.07.011 23928208 

  92. 92. Delattre C. Vijayalakshmi M. Monolith enzymatic microreactor at the frontier of glycomic toward a new route for the production of bioactive oligosaccharides J. Mol. Catal. B Enzym. 2009 60 97 105 10.1016/j.molcatb.2009.04.016 

  93. 93. Kraan S. Algal polysaccharides, novel applications and outlook Carbohydrates-Comprehensive Studies on Glycobiology and Glycotechnology IntechOpen London, UK 2012 

  94. 94. Mi?urcova L. Orsavova J. Vavra Ambroova J. Algal polysaccharides and health Polysacch. Bioactivity Biotechnol. 2015 1 109 144 

  95. 95. Skjanes K. Rebours C. Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process Crit. Rev. Biotechnol. 2013 33 172 215 10.3109/07388551.2012.681625 22765907 

  96. 96. Swain S.S. Paidesetty S.K. Padhy R.N. Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria Biomed. Pharmacother. 2017 90 760 776 10.1016/j.biopha.2017.04.030 28419973 

  97. 97. Liu X. Miao R. Lindberg P. Lindblad P. Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO 2 in cyanobacteria Energy Environ. Sci. 2019 12 2765 2777 10.1039/C9EE01214A 

  98. 98. Liang F. Englund E. Lindberg P. Lindblad P. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio Metab. Eng. 2018 46 51 59 10.1016/j.ymben.2018.02.006 29477858 

  99. 99. Shabestary K. Anfelt J. Ljungqvist E. Jahn M. Yao L. Hudson E.P. Targeted repression of essential genes to arrest growth and increase carbon partitioning and biofuel titers in cyanobacteria ACS Synth. Biol. 2018 7 1669 1675 10.1021/acssynbio.8b00056 29874914 

  100. 100. Xia P.F. Ling H. Foo J.L. Chang M.W. Synthetic biology toolkits for metabolic engineering of cyanobacteria Biotechnol. J. 2019 14 e1800496 10.1002/biot.201800496 30927496 

  101. 101. Behler J. Vijay D. Hess W.R. Akhtar M.K. CRISPR-based technologies for metabolic engineering in cyanobacteria Trends Biotechnol. 2018 36 996 1010 10.1016/j.tibtech.2018.05.011 29937051 

  102. 102. Fagundes M.B. Vendruscolo R.G. Maroneze M.M. Barin J.S. de Menezes C.R. Zepka L.Q. Jacob-Lopes E. Wagner R. Towards a sustainable route for the production of squalene using cyanobacteria Waste Biomass Valorization 2019 10 1295 1302 10.1007/s12649-017-0191-8 

  103. 103. Choi S.Y. Lee H.J. Choi J. Kim J. Sim S.J. Um Y. Kim Y. Lee T.S. Keasling J.D. Woo H.M. Photosynthetic conversion of CO 2 to farnesyl diphosphate-derived phytochemicals (amorpha-4, 11-diene and squalene) by engineered cyanobacteria Biotechnol. Biofuels 2016 9 1 12 10.1186/s13068-016-0617-8 26734071 

  104. 104. Choi S.Y. Wang J.-Y. Kwak H.S. Lee S.-M. Um Y. Kim Y. Sim S.J. Choi J.-I. Woo H.M. Improvement of squalene production from CO 2 in Synechococcus elongatus PCC 7942 by metabolic engineering and scalable production in a photobioreactor ACS Synth. Biol. 2017 6 1289 1295 10.1021/acssynbio.7b00083 28365988 

  105. 105. Choi S.Y. Woo H.M. CRISPRi-dCas12a: A dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in cyanobacteria ACS Synth. Biol. 2020 9 2351 2361 10.1021/acssynbio.0c00091 32379967 

  106. 106. Farruggia C. Kim M.-B. Bae M. Lee Y. Pham T.X. Yang Y. Han M.J. Park Y.-K. Lee J.-Y. Astaxanthin exerts anti-inflammatory and antioxidant effects in macrophages in NRF2-dependent and independent manners J. Nutr. Biochem. 2018 62 202 209 10.1016/j.jnutbio.2018.09.005 30308382 

  107. 107. Diao J. Song X. Zhang L. Cui J. Chen L. Zhang W. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin Metab. Eng. 2020 61 275 287 10.1016/j.ymben.2020.07.003 32707168 

  108. 108. Lan E.I. Wei C.T. Metabolic engineering of cyanobacteria for the photosynthetic production of succinate Metab. Eng. 2016 38 483 493 10.1016/j.ymben.2016.10.014 27989804 

  109. 109. Song K. Tan X. Liang Y. Lu X. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production Appl. Microbiol. Biotechnol. 2016 100 7865 7875 10.1007/s00253-016-7510-z 27079574 

  110. 110. Chaves J.E. Rueda-Romero P. Kirst H. Melis A. Engineering isoprene synthase expression and activity in cyanobacteria ACS Synth. Biol. 2017 6 2281 2292 10.1021/acssynbio.7b00214 28858481 

  111. 111. Hirokawa Y. Dempo Y. Fukusaki E. Hanai T. Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions J. Biosci. Bioeng. 2017 123 39 45 10.1016/j.jbiosc.2016.07.005 27613406 

  112. 112. Formighieri C. Melis A. Heterologous synthesis of geranyllinalool, a diterpenol plant product, in the cyanobacterium Synechocystis Appl. Microbiol. Biotechnol. 2017 101 2791 2800 10.1007/s00253-016-8081-8 28062974 

  113. 113. Lai M.J. Lan E.I. Photoautotrophic synthesis of butyrate by metabolically engineered cyanobacteria Biotechnol. Bioeng. 2019 116 893 903 10.1002/bit.26903 30552682 

  114. 114. Ehira S. Takeuchi T. Higo A. Spatial separation of photosynthesis and ethanol production by cell type-specific metabolic engineering of filamentous cyanobacteria Appl. Microbiol. Biotechnol. 2018 102 1523 1531 10.1007/s00253-017-8620-y 29143082 

  115. 115. Qiao C. Duan Y. Zhang M. Hagemann M. Luo Q. Lu X. Effects of reduced and enhanced glycogen pools on salt-induced sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942 Appl. Environ. Microbiol. 2018 84 e02023 10.1128/AEM.02023-17 29101204 

  116. 116. Ku J.T. Lan E.I. A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO 2 Metab. Eng. 2018 46 35 42 10.1016/j.ymben.2018.02.004 29462662 

  117. 117. Sarnaik A. Abernathy M.H. Han X. Ouyang Y. Xia K. Chen Y. Cress B. Zhang F. Lali A. Pandit R. Metabolic engineering of cyanobacteria for photoautotrophic production of heparosan, a pharmaceutical precursor of heparin Algal Res. 2019 37 57 63 10.1016/j.algal.2018.11.010 

  118. 118. Chin T. Okuda Y. Ikeuchi M. Improved sorbitol production and growth in cyanobacteria using promiscuous haloacid dehalogenase-like hydrolase J. Biotechnol. X 2019 1 100002 10.1016/j.btecx.2019.100002 

  119. 119. Betterle N. Melis A. Photosynthetic generation of heterologous terpenoids in cyanobacteria Biotechnol. Bioeng. 2019 116 2041 2051 10.1002/bit.26988 30963538 

  120. 120. Lee H.J. Son J. Sim S.J. Woo H.M. Metabolic rewiring of synthetic pyruvate dehydrogenase bypasses for acetone production in cyanobacteria Plant. Biotechnol. J. 2020 18 1860 1868 10.1111/pbi.13342 31960579 

  121. 121. Fan E.S. Lu K.W. Wen R.C. Shen C.R. Photosynthetic reduction of xylose to xylitol using cyanobacteria Biotechnol. J. 2020 15 1900354 10.1002/biot.201900354 32388928 

  122. 122. Qiao Y. Wang W. Lu X. Engineering cyanobacteria as cell factories for direct trehalose production from CO 2 Metab. Eng. 2020 62 161 171 10.1016/j.ymben.2020.08.014 32898716 

  123. 123. Pattharaprachayakul N. Lee H.J. Incharoensakdi A. Woo H.M. Evolutionary engineering of cyanobacteria to enhance the production of α-farnesene from CO 2 J. Agric. Food Chem. 2019 67 13658 13664 10.1021/acs.jafc.9b06254 31755253 

  124. 124. Nishiguchi H. Hiasa N. Uebayashi K. Liao J. Shimizu H. Matsuda F. Transomics data-driven, ensemble kinetic modeling for system-level understanding and engineering of the cyanobacteria central metabolism Metab. Eng. 2019 52 273 283 10.1016/j.ymben.2019.01.004 30633975 

  125. 125. Wang X. Liu W. Xin C. Zheng Y. Cheng Y. Sun S. Li R. Zhu X.-G. Dai S.Y. Rentzepis P.M. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations Proc. Natl. Acad. Sci. USA 2016 113 14225 14230 10.1073/pnas.1613340113 27911807 

  126. 126. Selao T.T. Jebarani J. Ismail N.A. Norling B. Nixon P.J. Enhanced production of D-lactate in cyanobacteria by re-routing photosynthetic cyclic and pseudo-cyclic electron flow Front. Plant. Sci. 2019 10 1700 10.3389/fpls.2019.01700 32117327 

  127. 127. Pade N. Erdmann S. Enke H. Dethloff F. Duhring U. Georg J. Wambutt J. Kopka J. Hess W.R. Zimmermann R. Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803 Biotechnol. Biofuels 2016 9 89 10.1186/s13068-016-0503-4 27096007 

  128. 128. Wlodarczyk A. Gnanasekaran T. Nielsen A.Z. Zulu N.N. Mellor S.B. Luckner M. Thøfner J.F.B. Olsen C.E. Mottawie M.S. Burow M. Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC 6803 Metab. Eng. 2016 33 1 11 10.1016/j.ymben.2015.10.009 26548317 

  129. 129. Videau P. Wells K.N. Singh A.J. Gerwick W.H. Philmus B. Assessment of Anabaena sp. strain PCC 7120 as a heterologous expression host for cyanobacterial natural products: Production of lyngbyatoxin A ACS Synth. Biol. 2016 5 978 988 10.1021/acssynbio.6b00038 27176641 

  130. 130. Yang G. Cozad M.A. Holland D.A. Zhang Y. Luesch H. Ding Y. Photosynthetic production of sunscreen shinorine using an engineered cyanobacterium ACS Synth. Biol. 2018 7 664 671 10.1021/acssynbio.7b00397 29304277 

  131. 131. Knoot C.J. Khatri Y. Hohlman R.M. Sherman D.H. Pakrasi H.B. Engineered production of hapalindole alkaloids in the cyanobacterium Synechococcus sp. UTEX 2973 ACS Synth. Biol. 2019 8 1941 1951 10.1021/acssynbio.9b00229 31284716 

  132. 132. Nozzi N.E. Case A.E. Carroll A.L. Atsumi S. Systematic approaches to efficiently produce 2, 3-butanediol in a marine cyanobacterium ACS Synth. Biol. 2017 6 2136 2144 10.1021/acssynbio.7b00157 28718632 

  133. 133. Miao R. Liu X. Englund E. Lindberg P. Lindblad P. Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases Metab. Eng. Commun. 2017 5 45 53 10.1016/j.meteno.2017.07.003 29188183 

  134. 134. Lin P.-C. Saha R. Zhang F. Pakrasi H.B. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803 Sci. Rep. 2017 7 1 10 10.1038/s41598-017-17831-y 28127051 

  135. 135. Li H. Shen C.R. Huang C.-H. Sung L.-Y. Wu M.-Y. Hu Y.-C. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production Metab. Eng. 2016 38 293 302 10.1016/j.ymben.2016.09.006 27693320 

  136. 136. Kaczmarzyk D. Cengic I. Yao L. Hudson E.P. Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX Metab. Eng. 2018 45 59 66 10.1016/j.ymben.2017.11.014 29199103 

  137. 137. Luan G. Zhang S. Lu X. Engineering cyanobacteria chassis cells toward more efficient photosynthesis Curr. Opin. Biotechnol. 2020 62 1 6 10.1016/j.copbio.2019.07.004 31505401 

  138. 138. Yang D. Park S.Y. Park Y.S. Eun H. Lee S.Y. Metabolic engineering of Escherichia coli for natural product biosynthesis Trends Biotechnol. 2020 38 745 765 10.1016/j.tibtech.2019.11.007 31924345 

  139. 139. Santos-Merino M. Singh A.K. Ducat D.C. New applications of synthetic biology tools for cyanobacterial metabolic engineering Front. Bioeng. Biotechnol. 2019 7 33 10.3389/fbioe.2019.00033 30873404 

  140. 140. Singh S. Cyanoomics: An advancement in the fields cyanobacterial omics biology with special reference to proteomics and transcriptomics Advances in Cyanobacterial Biology Elsevier Amsterdam, The Netherlands 2020 163 171 

  141. 141. Ferreira E.A. Pacheco C.C. Pinto F. Pereira J. Lamosa P. Oliveira P. Kirov B. Jaramillo A. Tamagnini P. Expanding the toolbox for Synechocystis sp. PCC 6803: Validation of replicative vectors and characterization of a novel set of promoters Synth. Biol. 2018 3 ysy014 10.1093/synbio/ysy014 

  142. 142. Wang B. Eckert C. Maness P.-C. Yu J. A genetic toolbox for modulating the expression of heterologous genes in the cyanobacterium Synechocystis sp. PCC 6803 ACS Synth. Biol. 2018 7 276 286 10.1021/acssynbio.7b00297 29232504 

  143. 143. Sengupta A. Madhu S. Wangikar P.P. A Library of tunable, portable, and inducer-free promoters derived from cyanobacteria ACS Synth. Biol. 2020 9 1790 1801 10.1021/acssynbio.0c00152 32551554 

  144. 144. Thiel K. Mulaku E. Dandapani H. Nagy C. Aro E.-M. Kallio P. Translation efficiency of heterologous proteins is significantly affected by the genetic context of RBS sequences in engineered cyanobacterium Synechocystis sp. PCC 6803 Microb. Cell Fact. 2018 17 34 10.1186/s12934-018-0882-2 29499707 

  145. 145. Heidorn T. Camsund D. Huang H.-H. Lindberg P. Oliveira P. Stensjo K. Lindblad P. Synthetic biology in cyanobacteria: Engineering and analyzing novel functions Methods in Enzymology Elsevier Amsterdam, The Netherlands 2011 Volume 497 539 579 

  146. 146. Liu D. Pakrasi H.B. Exploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803 Microb. Cell Fact. 2018 17 1 8 10.1186/s12934-018-0897-8 29306327 

  147. 147. Nakahira Y. Ogawa A. Asano H. Oyama T. Tozawa Y. Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synechococcus elongatus PCC 7942 Plant. Cell Physiol. 2013 54 1724 1735 10.1093/pcp/pct115 23969558 

  148. 148. Chi X. Zhang S. Sun H. Duan Y. Qiao C. Luan G. Lu X. Adopting a theophylline-responsive riboswitch for flexible regulation and understanding of glycogen metabolism in Synechococcus elongatus PCC7942 Front. Microbiol. 2019 10 551 10.3389/fmicb.2019.00551 30949148 

  149. 149. Ma A.T. Schmidt C.M. Golden J.W. Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches Appl. Environ. Microbiol. 2014 80 6704 6713 10.1128/AEM.01697-14 25149516 

  150. 150. Higo A. Ehira S. Anaerobic butanol production driven by oxygen-evolving photosynthesis using the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120 Appl. Microbiol. Biotechnol. 2019 103 2441 2447 10.1007/s00253-019-09635-z 30673808 

  151. 151. Kaneko T. Tabata S. Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803 Plant Cell Physiol. 1997 38 1171 1176 10.1093/oxfordjournals.pcp.a029103 9435137 

  152. 152. Yang H.W. Song J.Y. Cho S.M. Kwon H.C. Pan C.-H. Park Y.-I. Genomic survey of salt acclimation-related genes in the halophilic cyanobacterium Euhalothece sp. Z-M001 Sci. Rep. 2020 10 676 10.1038/s41598-020-57546-1 31959801 

  153. 153. Tan X. Hou S. Song K. Georg J. Klahn S. Lu X. Hess W.R. The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 Biotechnol. Biofuels 2018 11 218 10.1186/s13068-018-1215-8 30127850 

  154. 154. Koch R. Kupczok A. Stucken K. Ilhan J. Hammerschmidt K. Dagan T. Plasticity first: Molecular signatures of a complex morphological trait in filamentous cyanobacteria BMC Evol. Biol. 2017 17 1 11 10.1186/s12862-017-1053-5 28049419 

  155. 155. Karlsen J. Asplund-Samuelsson J. Thomas Q. Jahn M. Hudson E.P. Ribosome profiling of Synechocystis reveals altered ribosome allocation at carbon starvation mSystems 2018 3 e00126 10.1128/mSystems.00126-18 

  156. 156. Jahn M. Vialas V. Karlsen J. Maddalo G. Edfors F. Forsstrom B. Uhlen M. Kall L. Hudson E.P. Growth of cyanobacteria is constrained by the abundance of light and carbon assimilation proteins Cell Rep. 2018 25 478 486.e478 10.1016/j.celrep.2018.09.040 30304686 

  157. 157. Yang C. Hua Q. Shimizu K. Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose Metab. Eng. 2002 4 202 216 10.1006/mben.2002.0226 12616690 

  158. 158. Shastri A.A. Morgan J.A. Flux balance analysis of photoautotrophic metabolism Biotechnol. Prog. 2005 21 1617 1626 10.1021/bp050246d 16321043 

  159. 159. Yoshikawa K. Kojima Y. Nakajima T. Furusawa C. Hirasawa T. Shimizu H. Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC6803 Appl. Microbiol. Biotechnol. 2011 92 347 10.1007/s00253-011-3559-x 21881889 

  160. 160. Toyoshima M. Toya Y. Shimizu H. Flux balance analysis of cyanobacteria reveals selective use of photosynthetic electron transport components under different spectral light conditions Photosynth. Res. 2020 143 31 43 10.1007/s11120-019-00678-x 31625072 

  161. 161. Qian X. Kim M.K. Kumaraswamy G.K. Agarwal A. Lun D.S. Dismukes G.C. Flux balance analysis of photoautotrophic metabolism: Uncovering new biological details of subsystems involved in cyanobacterial photosynthesis Biochim. Biophys. Acta Bioenerg. 2017 1858 276 287 10.1016/j.bbabio.2016.12.007 28012908 

  162. 162. Guerreiro A.C. Penning R. Raaijmakers L.M. Axman I.M. Heck A.J. Altelaar A.M. Monitoring light/dark association dynamics of multi-protein complexes in cyanobacteria using size exclusion chromatography-based proteomics J. Proteom. 2016 142 33 44 10.1016/j.jprot.2016.04.030 

  163. 163. Liberton M. Saha R. Jacobs J.M. Nguyen A.Y. Gritsenko M.A. Smith R.D. Koppenaal D.W. Pakrasi H.B. Global proteomic analysis reveals an exclusive role of thylakoid membranes in bioenergetics of a model cyanobacterium Mol. Cell Proteom. 2016 15 2021 2032 10.1074/mcp.M115.057240 

  164. 164. Choi S.Y. Park B. Choi I.-G. Sim S.J. Lee S.-M. Um Y. Woo H.M. Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq Sci. Rep. 2016 6 30584 10.1038/srep30584 27488818 

  165. 165. Kizawa A. Kawahara A. Takimura Y. Nishiyama Y. Hihara Y. RNA-seq profiling reveals novel target genes of LexA in the cyanobacterium Synechocystis sp. PCC 6803 Front. Microbiol. 2016 7 193 10.3389/fmicb.2016.00193 26925056 

  166. 166. Lin X. Ding H. Zeng Q. Transcriptomic response during phage infection of a marine cyanobacterium under phosphorus-limited conditions Environ. Microbiol. 2016 18 450 460 10.1111/1462-2920.13104 26522011 

  167. 167. Gonzalez A. Bes M.T. Peleato M.L. Fillat M.F. Expanding the role of FurA as essential global regulator in cyanobacteria PLoS ONE 2016 11 e0151384 10.1371/journal.pone.0151384 26967347 

  168. 168. Hood R.D. Higgins S.A. Flamholz A. Nichols R.J. Savage D.F. The stringent response regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus Proc. Natl. Acad. Sci. USA 2016 113 E4867 E4876 10.1073/pnas.1524915113 27486247 

  169. 169. Harke M.J. Jankowiak J.G. Morrell B.K. Gobler C.J. Transcriptomic responses in the bloom-forming cyanobacterium Microcystis induced during exposure to zooplankton Appl. Environ. Microbiol. 2017 83 e02832 10.1128/AEM.02832-16 28003198 

  170. 170. Hendry J.I. Prasannan C. Ma F. Mollers K.B. Jaiswal D. Digmurti M. Allen D.K. Frigaard N.U. Dasgupta S. Wangikar P.P. Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary 13C metabolic flux analysis Biotechnol. Bioeng. 2017 114 2298 2308 10.1002/bit.26350 28600876 

  171. 171. Hirokawa Y. Matsuo S. Hamada H. Matsuda F. Hanai T. Metabolic engineering of Synechococcus elongatus PCC 7942 for improvement of 1, 3-propanediol and glycerol production based on in silico simulation of metabolic flux distribution Microb. Cell Fact. 2017 16 1 12 10.1186/s12934-017-0824-4 28049473 

  172. 172. Jazmin L.J. Xu Y. Cheah Y.E. Adebiyi A.O. Johnson C.H. Young J.D. Isotopically nonstationary 13C flux analysis of cyanobacterial isobutyraldehyde production Metab. Eng. 2017 42 9 18 10.1016/j.ymben.2017.05.001 28479191 

  173. 173. Nakajima T. Yoshikawa K. Toya Y. Matsuda F. Shimizu H. Metabolic flux analysis of the Synechocystis sp. PCC 6803 ΔnrtABCD mutant reveals a mechanism for metabolic adaptation to nitrogen-limited conditions Plant. Cell Physiol. 2017 58 537 545 10.1093/pcp/pcx047 28130420 

  174. 174. Sun T. Chen L. Zhang W. Quantitative proteomics reveals potential crosstalk between a small RNA CoaR and a two-component regulator Slr1037 in Synechocystis sp. PCC6803 J. Proteome Res. 2017 16 2954 2963 10.1021/acs.jproteome.7b00243 28677390 

  175. 175. Liberton M. Chrisler W.B. Nicora C.D. Moore R.J. Smith R.D. Koppenaal D.W. Pakrasi H.B. Jacobs J.M. Phycobilisome truncation causes widespread proteome changes in Synechocystis sp. PCC 6803 PLoS ONE 2017 12 e0173251 10.1371/journal.pone.0173251 28253354 

  176. 176. Ge H. Fang L. Huang X. Wang J. Chen W. Liu Y. Zhang Y. Wang X. Xu W. He Q. Translating divergent environmental stresses into a common proteome response through the histidine kinase 33 (Hik33) in a model cyanobacterium Mol. Cell Proteom. 2017 16 1258 1274 10.1074/mcp.M116.068080 28668777 

  177. 177. Mackey K.R. Post A.F. McIlvin M.R. Saito M.A. Physiological and proteomic characterization of light adaptations in marine Synechococcus Environ. Microbiol. 2017 19 2348 2365 10.1111/1462-2920.13744 28371229 

  178. 178. Munoz-Marin M.d.C. Gomez-Baena G. Diez J. Beynon R.J. Gonzalez-Ballester D. Zubkov M.V. Garcia-Fernandez J.M. Glucose uptake in Prochlorococcus : Diversity of kinetics and effects on the metabolism Front. Microbiol. 2017 8 327 10.3389/fmicb.2017.00327 28337178 

  179. 179. Dominguez-Martin M.A. Gomez-Baena G. Diez J. Lopez-Grueso M.J. Beynon R.J. Garcia-Fernandez J.M. Quantitative proteomics shows extensive remodeling induced by nitrogen limitation in Prochlorococcus marinus SS120 MSystems 2017 2 3 10.1128/mSystems.00008-17 

  180. 180. Fang L. Ge H. Huang X. Liu Y. Lu M. Wang J. Chen W. Xu W. Wang Y. Trophic mode-dependent proteomic analysis reveals functional significance of light-independent chlorophyll synthesis in Synechocystis sp. PCC 6803 Mol. Plant. 2017 10 73 85 10.1016/j.molp.2016.08.006 27585879 

  181. 181. Wang J. Chen L. Chen Z. Zhang W. RNA-seq based transcriptomic analysis of single bacterial cells Integr. Biol. 2015 7 1466 1476 10.1039/C5IB00191A 

  182. 182. Giner-Lamia J. Robles-Rengel R. Hernandez-Prieto M.A. Muro-Pastor M.I. Florencio F.J. Futschik M.E. Identification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803 Nucleic Acids Res. 2017 45 11800 11820 10.1093/nar/gkx860 29036481 

  183. 183. Newby R. Jr. Lee L.H. Perez J.L. Tao X. Chu T. Characterization of zinc stress response in Cyanobacterium Synechococcus sp. IU 625 Aquat. Toxicol. 2017 186 159 170 10.1016/j.aquatox.2017.03.005 28284152 

  184. 184. Joshi C.J. Peebles C.A. Prasad A. Modeling and analysis of flux distribution and bioproduct formation in Synechocystis sp. PCC 6803 using a new genome-scale metabolic reconstruction Algal Res. 2017 27 295 310 10.1016/j.algal.2017.09.013 

  185. 185. Malatinszky D. Steuer R. Jones P.R. A comprehensively curated genome-scale two-cell model for the heterocystous cyanobacterium Anabaena sp. PCC 7120 Plant. Physiol. 2017 173 509 523 10.1104/pp.16.01487 27899536 

  186. 186. Mueller T.J. Ungerer J.L. Pakrasi H.B. Maranas C.D. Identifying the metabolic differences of a fast-growth phenotype in Synechococcus UTEX 2973 Sci. Rep. 2017 7 41569 10.1038/srep41569 28139686 

  187. 187. Morimoto D. Kimura S. Sako Y. Yoshida T. Transcriptome analysis of a bloom-forming cyanobacterium Microcystis aeruginosa during Ma-LMM01 phage infection Front. Microbiol. 2018 9 2 10.3389/fmicb.2018.00002 29403457 

  188. 188. Abernathy M.H. Czajka J.J. Allen D.K. Hill N.C. Cameron J.C. Tang Y.J. Cyanobacterial carboxysome mutant analysis reveals the influence of enzyme compartmentalization on cellular metabolism and metabolic network rigidity Metab. Eng. 2019 54 222 231 10.1016/j.ymben.2019.04.010 31029860 

  189. 189. Choi J.-S. Park Y.H. Oh J.H. Kim S. Kwon J. Choi Y.-E. Efficient profiling of detergent-assisted membrane proteome in cyanobacteria J. Appl. Phycol. 2019 32 1 8 10.1007/s10811-019-01986-4 

  190. 190. Fang X. Liu Y. Zhao Y. Chen Y. Liu R. Qin Q.L. Li G. Zhang Y.Z. Chan W. Hess W.R. Transcriptomic responses of the marine cyanobacterium Prochlorococcus to viral lysis products Environ. Microbiol. 2019 21 2015 2028 10.1111/1462-2920.14513 30585375 

  191. 191. Gonzalez A. Riley K.W. Harwood T.V. Zuniga E.G. Risser D.D. A tripartite, hierarchical sigma factor cascade promotes hormogonium development in the filamentous cyanobacterium Nostoc punctiforme mSphere 2019 4 e00231-19 10.1128/mSphere.00231-19 31043519 

  192. 192. Hirose Y. Chihong S. Watanabe M. Yonekawa C. Murata K. Ikeuchi M. Eki T. Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria Mol. Plant 2019 12 715 725 10.1016/j.molp.2019.02.010 30818037 

  193. 193. Jaiswal D. Sengupta A. Sengupta S. Madhu S. Pakrasi H.B. Wangikar P.P. A novel cyanobacterium Synechococcus elongatus PCC 11802 has distinct genomic and metabolomic characteristics compared to its neighbor PCC 11801 Sci. Rep. 2020 10 191 10.1038/s41598-019-57051-0 31932622 

  194. 194. May D.S. Crnkovic C.M. Krunic A. Wilson T.A. Fuchs J.R. Orjala J.E. (15)N Stable isotope labeling and comparative metabolomics facilitates genome mining in cultured cyanobacteria ACS Chem. Biol. 2020 15 758 765 10.1021/acschembio.9b00993 32083834 

  195. 195. Solanki H. Pierdet M. Thomas O.P. Zubia M. Insights into the metabolome of the cyanobacterium Leibleinia gracilis from the lagoon of Tahiti and first inspection of its variability Metabolites 2020 10 215 10.3390/metabo10050215 

  196. 196. Shi M. Chen L. Zhang W. Regulatory diversity and functional analysis of two-component systems in cyanobacterium Synechocystis sp. PCC 6803 by GC-MS based metabolomics Front. Microbiol. 2020 11 403 10.3389/fmicb.2020.00403 32256471 

  197. 197. Cui J. Sun T. Li S. Xie Y. Song X. Wang F. Chen L. Zhang W. Improved salt tolerance and metabolomics analysis of Synechococcus elongatus UTEX 2973 by overexpressing Mrp Antiporters Front. Bioeng. Biotechnol. 2020 8 500 10.3389/fbioe.2020.00500 32528943 

  198. 198. Sengupta A. Pritam P. Jaiswal D. Bandyopadhyay A. Pakrasi H.B. Wangikar P.P. Photosynthetic co-production of succinate and ethylene in a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801 Metabolites 2020 10 250 10.3390/metabo10060250 32560048 

  199. 199. Georges des Aulnois M. Reveillon D. Robert E. Caruana A. Briand E. Guljamow A. Dittmann E. Amzil Z. Bormans M.J.T. Salt shock responses of Microcystis revealed through physiological, transcript, and metabolomic analyses Toxins 2020 12 192 10.3390/toxins12030192 32197406 

  200. 200. de Alvarenga L.V. Hess W.R. Hagemann M. AcnSP―A novel small protein regulator of aconitase activity in the cyanobacterium Synechocystis sp. PCC 6803 Front. Microbiol. 2020 11 1445 10.3389/fmicb.2020.01445 32695088 

  201. 201. Popin R.V. Delbaje E. de Abreu V.A.C. Rigonato J. Dorr F.A. Pinto E. Sivonen K. Fiore M.F. Genomic and metabolomic analyses of natural products in Nodularia spumigena isolated from a shrimp culture pond Toxins (Basel) 2020 12 141 10.3390/toxins12030141 

  202. 202. Koksharova O.A. Butenko I.O. Pobeguts O.V. Safronova N.A. Govorun V.M. The first proteomics study of Nostoc sp. PCC 7120 exposed to cyanotoxin BMAA under nitrogen starvation Toxins (Basel) 2020 12 310 10.3390/toxins12050310 

  203. 203. Teoh F. Shah B. Ostrowski M. Paulsen I. Comparative membrane proteomics reveal contrasting adaptation strategies for coastal and oceanic marine Synechococcus cyanobacteria Environ. Microbiol. 2020 22 1816 1828 10.1111/1462-2920.14876 31769166 

  204. 204. Romeu M.J.L. Dominguez-Perez D. Almeida D. Morais J. Campos A. Vasconcelos V. Mergulhao F.J.M. Characterization of planktonic and biofilm cells from two filamentous cyanobacteria using a shotgun proteomic approach Biofouling 2020 36 631 645 10.1080/08927014.2020.1795141 32715767 

  205. 205. He P. Cai X. Chen K. Fu X. Identification of small RNAs involved in nitrogen fixation in Anabaena sp. PCC 7120 based on RNA-seq under steady state conditions Ann. Microbiol. 2020 70 4 10.1186/s13213-020-01557-w 

  206. 206. Mironov K.S. Kupriyanova E.V. Shumskaya M. Los D.A. Alcohol stress on cyanobacterial membranes: New insights revealed by transcriptomics Gene 2020 764 145055 10.1016/j.gene.2020.145055 32882332 

  207. 207. Arias D.B. Gomez Pinto K.A. Cooper K.K. Summers M.L. Transcriptomic analysis of cyanobacterial alkane overproduction reveals stress-related genes and inhibitors of lipid droplet formation Microb. Genom. 2020 6 e000432 10.1099/mgen.0.000432 32941127 

  208. 208. Gordon G.C. Cameron J.C. Gupta S.T.P. Engstrom M.D. Reed J.L. Pfleger B.F. Genome-wide analysis of RNA decay in the cyanobacterium Synechococcus sp. strain PCC 7002 mSystems 2020 5 e00224-20 10.1128/mSystems.00224-20 32753502 

  209. 209. Ahmad A. Pathania R. Srivastava S. Biochemical Characteristics and a Genome-scale metabolic model of an Indian euryhaline cyanobacterium with high polyglucan content Metabolites 2020 10 177 10.3390/metabo10050177 32365713 

  210. 210. Malek Shahkouhi A. Motamedian E. Reconstruction of a regulated two-cell metabolic model to study biohydrogen production in a diazotrophic cyanobacterium Anabaena variabilis ATCC 29413 PLoS ONE 2020 15 e0227977 10.1371/journal.pone.0227977 31978122 

  211. 211. Rubin B.E. Wetmore K.M. Price M.N. Diamond S. Shultzaberger R.K. Lowe L.C. Curtin G. Arkin A.P. Deutschbauer A. Golden S.S. The essential gene set of a photosynthetic organism Proc. Natl. Acad. Sci. USA 2015 112 E6634 E6643 10.1073/pnas.1519220112 26508635 

  212. 212. Englund E. Liang F. Lindberg P. Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803 Sci. Rep. 2016 6 36640 10.1038/srep36640 27857166 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로