$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] CFD-aided design of internally heat-integrated pressure-swing distillation for ternary azeotropic separation constrained by pinch pressure

Applied thermal engineering, v.195, 2021년, pp.117198 -   

Lee, Heecheon (Corresponding author.) ,  Seo, Chaeyeong ,  Lee, Minyong ,  Lee, Jae W.

Abstract AI-Helper 아이콘AI-Helper

Abstract This study addresses computational fluid dynamics (CFD) for designing internally heat-integrated pressure-swing distillation (HIPSD) with improved energy efficiency in azeotropic distillation. An extended concept of pinch pressure is applied to determine the operating pressure of the HIPSD...

Keyword

참고문헌 (57)

  1. Appl. Therm. Eng. Zeynalian 178 2020 10.1016/j.applthermaleng.2020.115593 Carbon dioxide capture from compressed air energy storage system 

  2. Energy Convers. Manage. Lee 207 2020 10.1016/j.enconman.2020.112507 Enhancement of highly-concentrated hydrogen productivity in chemical looping steam methane reforming using Fe-substituted LaCoO3 

  3. Appl. Therm. Eng. Sultan 116285 2020 Advanced post combustion CO2 capture process-A systematic approach to minimize thermal energy requirement 

  4. Appl. Energy Jana 87 1477 2010 10.1016/j.apenergy.2009.10.014 Heat integrated distillation operation 

  5. Chem. Eng. Process.-Process Intensif. Namgung 154 2020 10.1016/j.cep.2020.108048 Entrainer effect of n-hexanol reactant on coproducing n-butyl and n-hexyl acetate in energy-efficient reactive distillation 

  6. Appl. Therm. Eng. Jana 123 411 2017 10.1016/j.applthermaleng.2017.05.106 An energy efficient middle vessel batch distillation: techno-economic feasibility, dynamics and control 

  7. Ind. Eng. Chem. Res. Jang 58 8206 2019 10.1021/acs.iecr.9b00324 Energy-efficient reactive dividing wall column for simultaneous esterification of n-amyl alcohol and n-hexanol 

  8. Korean J. Chem. Eng. Mo 38 195 2021 10.1007/s11814-020-0682-3 Unfavorable energy integration of reactive dividing wall column for simultaneous esterification reactions 

  9. Ind. Eng. Chem. Res. Kang 54 3175 2015 10.1021/ie5047957 Graphical design of integrated reaction and distillation in dividing wall columns 

  10. Appl. Therm. Eng. Long 59 200 2013 10.1016/j.applthermaleng.2013.05.035 Design and optimization of thermally coupled distillation schemes for the trichlorosilane purification process 

  11. Korean J. Chem. Eng. Lee 36 954 2019 10.1007/s11814-019-0271-5 Multiple transesterifications in a reactive dividing wall column integrated with a heat pump 

  12. Energy Convers. Manage. Jana 77 287 2014 10.1016/j.enconman.2013.09.055 Advances in heat pump assisted distillation column: a review 

  13. Ind. Eng. Chem. Res. Malone 39 3953 2000 10.1021/ie000633m Reactive distillation 

  14. Ind. Eng. Chem. Res. Jang 59 1966 2020 10.1021/acs.iecr.9b05051 Enhanced energy savings from simultaneous triple esterification of C4-C6 alcohols in a single reactive distillation column 

  15. Ind. Eng. Chem. Fundam. Doherty 24 474 1985 10.1021/i100020a012 Design and synthesis of homogeneous azeotropic distillations. 3. The sequencing of columns for azeotropic and extractive distillations 

  16. Ind. Eng. Chem. Res. Lee 39 1061 2000 10.1021/ie990447k Circumventing an azeotrope in reactive distillation 

  17. AIChE J. Guo 49 3161 2003 10.1002/aic.690491216 Feasible products in batch reactive distillation 

  18. Sep. Purif. Technol. Zhu 169 66 2016 10.1016/j.seppur.2016.06.009 Separation of acetonitrile/methanol/benzene ternary azeotrope via triple column pressure-swing distillation 

  19. Chem. Eng. Res. Des. Guang 143 249 2019 10.1016/j.cherd.2019.01.021 Comparison of heterogeneous azeotropic and pressure-swing distillations for separating the diisopropylether/isopropanol/water mixtures 

  20. Process Saf. Environ. Prot. Cui 122 1 2019 10.1016/j.psep.2018.11.017 Comparison of pressure-swing distillation and heterogeneous azeotropic distillation for recovering benzene and isopropanol from wastewater 

  21. Appl. Therm. Eng. Zhang 173 2020 10.1016/j.applthermaleng.2020.115228 Economically and thermodynamically efficient heat pump-assisted side-stream pressure-swing distillation arrangement for separating a maximum-boiling azeotrope 

  22. Comput. Chem. Eng. Zhu 76 137 2015 10.1016/j.compchemeng.2015.02.016 Separating an azeotropic mixture of toluene and ethanol via heat integration pressure swing distillation 

  23. Ind. Eng. Chem. Res. Qi 58 20734 2019 10.1021/acs.iecr.9b03846 Heat-integrated azeotropic distillation and extractive distillation for the separation of heterogeneous ternary azeotropes of diisopropyl ether/isopropyl alcohol/Water 

  24. 10.1002/aic.16526 A. Yang, W. Shen, S.A. Wei, L. Dong, J. Li, V. Gerbaud, Design and control of pressure‐swing distillation for separating ternary systems with three binary minimum azeotropes, AIChE J. 65 (2019) 1281-1293. 

  25. Sep. Purif. Technol. Zhang 211 40 2019 10.1016/j.seppur.2018.09.053 Heat-integrated triple-column pressure-swing distillation process with multi-recycle streams for the separation of ternary azeotropic mixture of acetonitrile/methanol/benzene 

  26. AIChE J. Chin 52 1790 2006 10.1002/aic.10795 Feasible products in complex batch reactive distillation 

  27. Ind. Eng. Chem. Res. Lee 59 14398 2020 10.1021/acs.iecr.0c01683 Energy-efficient design of a novel double annular separation column using pinch pressure 

  28. Ind. Eng. Chem. Res. Agrawal 38 2065 1999 10.1021/ie980531k Thermodynamically efficient systems for ternary distillation 

  29. Comput. Chem. Eng. Gadalla 31 1346 2007 10.1016/j.compchemeng.2006.11.006 A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation column (i-HIDiC) 

  30. Korean J. Chem. Eng. Kim 29 1680 2012 10.1007/s11814-012-0106-0 Energy saving and thermodynamic efficiency of a double-effect distillation column using internal heat integration 

  31. Korean J. Chem. Eng. Noda 17 593 2000 10.1007/BF02707172 Development on a coaxial heat integrated distillation column (HIDiC) 

  32. Energy Suphanit 35 1505 2010 10.1016/j.energy.2009.12.008 Design of internally heat-integrated distillation column (HIDiC): uniform heat transfer area versus uniform heat distribution 

  33. AIChE J. Lee 47 1333 2001 10.1002/aic.690470611 Graphical design applied to MTBE and methyl acetate reactive distillation processes 

  34. 10.1098/rspa.2000.0596 J.W. Lee, S. Hauan, K. Lien, A. Westerberg, A graphical method for designing reactive distillation columns. I. The Ponchon-Savarit method, Proc. R. Soc. London. Series A: Math., Phys. Eng. Sci. 456 (2000) 1953-1964. 

  35. 10.1098/rspa.2000.0597 J.W. Lee, S. Hauan, K. Lien, A. Westerberg, A graphical method for designing reactive distillation columns. II. The McCabe-Thiele method, Proc. R. Soc. London. Series A: Math., Phys. Eng. Sci. 456 (2000) 1965-1978. 

  36. AIChE J. Stichlmair 38 1523 1992 10.1002/aic.690381005 Separation regions and processes of zeotropic and azeotropic ternary distillation 

  37. AIChE J. Fidkowski 39 1303 1993 10.1002/aic.690390806 Feasibility of separations for distillation of nonideal ternary mixtures 

  38. Fluid Phase Equilib. Samarov 385 129 2015 10.1016/j.fluid.2014.11.004 Liquid-liquid equilibrium and critical states for the system acetic acid+ n-butanol+ n-butyl acetate+ water at 308.15 K 

  39. 10.1002/9781118510193 W.L. Luyben, Distillation Design and Control using Aspen simulation, John Wiley & Sons, 2013. 

  40. Ind. Eng. Chem. Res. Springer 41 1621 2002 10.1021/ie010388m Crossing of the distillation boundary in homogeneous azeotropic distillation: influence of interphase mass transfer 

  41. AIChE J. Duran 32 123 1986 10.1002/aic.690320114 Simultaneous optimization and heat integration of chemical processes 

  42. Chem. Eng. Res. Des. Gadalla 83 987 2005 10.1205/cherd.04301 Pinch analysis-based approach to conceptual design of internally heat-integrated distillation columns 

  43. Chem. Eng. Res. Des. Ponce 95 55 2015 10.1016/j.cherd.2015.01.002 Using an internally heat-integrated distillation column for ethanol-water separation for fuel applications 

  44. Appl. Therm. Eng. Kiran 76 509 2015 10.1016/j.applthermaleng.2014.11.053 Assessing the performance improvement of an intensified heat integration scheme: reactive pressure-swing distillation 

  45. Comput. Chem. Eng. Papoulias 7 707 1983 10.1016/0098-1354(83)85023-6 A structural optimization approach in process synthesis-II: Heat recovery networks 

  46. Comput. Chem. Eng. Furman 25 1371 2001 10.1016/S0098-1354(01)00681-0 Computational complexity of heat exchanger network synthesis 

  47. Sep. Purif. Technol. Kiran 142 307 2015 10.1016/j.seppur.2015.01.003 A hybrid heat integration scheme for bioethanol separation through pressure-swing distillation route 

  48. Energy Nakaiwa 22 621 1997 10.1016/S0360-5442(96)00157-0 Energy savings in heat-integrated distillation columns 

  49. Appl. Energy Jana 172 199 2016 10.1016/j.apenergy.2016.03.117 A new divided-wall heat integrated distillation column (HIDiC) for batch processing: Feasibility and analysis 

  50. Nucl. Technol. Sabharwall 166 197 2009 10.13182/NT09-A7406 Effect of mass flow rate on the convective heat transfer coefficient: analysis for constant velocity and constant area case 

  51. Chem. Eng. Technol. Van Baten 24 1077 2001 10.1002/1521-4125(200110)24:10<1077::AID-CEAT1077>3.0.CO;2-B Hydrodynamics of distillation tray column with structured catalyst containing envelopes: experiments versus CFD simulations 

  52. J. Tu, G.H. Yeoh, C. Liu, Computational Fluid Dynamics: A Practical Approach, Butterworth-Heinemann, 2018. 

  53. N.B. Vargaftik, Handbook of Thermal Conductivity of Liquids and Gases, CRC press, 1993. 

  54. D.R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, CRC press, 1995. 

  55. 10.1007/978-3-030-28691-0 S. Rodriguez, Applied Computational Fluid Dynamics and Turbulence Modeling, Springer, 2019. 

  56. 10.1016/S0009-2509(02)00473-6 C.F. Petre, F. Larachi, I. Iliuta, B. Grandjean, Pressure drop through structured packings: breakdown into the contributing mechanisms by CFD modeling, Chem. Eng. Sci. 58 (2003) 163-177. 

  57. Chem. Eng. Process. Process Intensif. Kiss 86 125 2014 10.1016/j.cep.2014.10.017 A review on process intensification in internally heat-integrated distillation columns 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로