$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Identification of Target Chicken Populations by Machine Learning Models Using the Minimum Number of SNPs 원문보기

Animals an open access journal from MDPI, v.11 no.1, 2021년, pp.241 -   

Seo, Dongwon (Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea) ,  Cho, Sunghyun (seotuna@cnu.ac.kr (D.S.)) ,  Manjula, Prabuddha (cshcshh@cnu.ac.kr (S.C.)) ,  Choi, Nuri (prabuddhamanjula@yahoo.com (P.M.)) ,  Kim, Young-Kuk (slee46@cnu.ac.kr (S.H.L.)) ,  Koh, Yeong Jun (Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea) ,  Lee, Seung Hwan (seotuna@cnu.ac.kr (D.S.)) ,  Kim, Hyung-Yong (cshcshh@cnu.ac.kr (S.C.)) ,  Lee, Jun Heon (prabuddhamanjula@yahoo.com (P.M.))

Abstract AI-Helper 아이콘AI-Helper

Simple SummaryClassifying a target population at the genetic level can provide important information for the preservation and commercial use of a breed. In this study, the minimum number of markers was used in combination, to distinguish target populations based on high-density single nucleotide pol...

Keyword

참고문헌 (49)

  1. 1. Yeung R.M. Morris J. Consumer perception of food risk in chicken meat Nutr. Food Sci. 2001 10.1108/00346650110409092 

  2. 2. MAFRA (Ministry of Agriculture, Food and Rural Affairs) Major Statistics of the Ministry of Agriculture, Food and Rural Affairs 2019 Available online: http://library.mafra.go.kr/skyblueimage/28195.pdf (accessed on 1 November 2020) 

  3. 3. Shim J.-M. Seo D.-W. Seo S. Kim J.-J. Min D.-M. Kim J. Jeon J.-T. Lee J.-H. Discrimination of Korean cattle (Hanwoo) with imported beef from USA based on the SNP markers Korean J. Food Sci. Anim. Resour. 2010 30 918 922 10.5851/kosfa.2010.30.6.918 

  4. 4. Oh J.-D. Song K.-D. Seo J.-H. Kim D.-K. Kim S.-H. Seo K.-S. Lim H.-T. Lee J.-B. Park H.-C. Ryu Y.-C. Genetic traceability of black pig meats using microsatellite markers Asian Australas. J. Anim. Sci. 2014 27 926 10.5713/ajas.2013.13829 25050032 

  5. 5. Kim K. Seo M. Kang H. Cho S. Kim H. Seo K.-S. Application of logitboost classifier for traceability using snp chip data PLoS ONE 2015 10 e0139685 10.1371/journal.pone.0139685 26436917 

  6. 6. Choi N.-R. Hoque M.R. Seo D.-W. Sultana H. Park H.-B. Lim H.-T. Heo K.-N. Kang B.-S. Jo C. Lee J.-H. ISAG-recommended Microsatellite Marker Analysis among Five Korean Native Chicken Lines J. Anim. Sci. Technol. 2012 54 401 409 10.5187/JAST.2012.54.6.401 

  7. 7. Dalvit C. De Marchi M. Cassandro M. Genetic traceability of livestock products: A review Meat Sci. 2007 77 437 449 10.1016/j.meatsci.2007.05.027 22061927 

  8. 8. Burt D.W. Chicken genome: Current status and future opportunities Genome Res. 2005 15 1692 1698 10.1101/gr.4141805 16339367 

  9. 9. Hillier L.W. Miller W. Birney E. Warren W. Hardison R.C. Ponting C.P. Bork P. Burt D.W. Groenen M.A. Delany M.E. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution Nature 2014 423 695 777 10.1038/nature03154 

  10. 10. Groenen M.A. Megens H.-J. Zare Y. Warren W.C. Hillier L.W. Crooijmans R.P. Vereijken A. Okimoto R. Muir W.M. Cheng H.H. The development and characterization of a 60K SNP chip for chicken BMC Genom. 2011 12 274 10.1186/1471-2164-12-274 

  11. 11. Kranis A. Gheyas A.A. Boschiero C. Turner F. Yu L. Smith S. Talbot R. Pirani A. Brew F. Kaiser P. Development of a high density 600K SNP genotyping array for chicken BMC Genom. 2013 14 59 10.1186/1471-2164-14-59 

  12. 12. Karniol B. Shirak A. Baruch E. Singrün C. Tal A. Cahana A. Kam M. Skalski Y. Brem G. Weller J. Development of a 25-plex SNP assay for traceability in cattle Anim. Genet. 2009 40 353 356 10.1111/j.1365-2052.2008.01846.x 19292709 

  13. 13. Futema M. Bourbon M. Williams M. Humphries S.E. Clinical utility of the polygenic LDL-C SNP score in familial hypercholesterolemia Atherosclerosis 2018 277 457 463 10.1016/j.atherosclerosis.2018.06.006 30270085 

  14. 14. Vignal A. Milan D. SanCristobal M. Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics Genet. Sel. Evol. 2002 34 275 305 10.1186/1297-9686-34-3-275 12081799 

  15. 15. Suekawa Y. Aihara H. Araki M. Hosokawa D. Mannen H. Sasazaki S. Development of breed identification markers based on a bovine 50K SNP array Meat Sci. 2010 85 285 288 10.1016/j.meatsci.2010.01.015 20374900 

  16. 16. Brooks A. Creighton E.K. Gandolfi B. Khan R. Grahn R.A. Lyons L.A. SNP Miniplexes for Individual Identification of Random-Bred Domestic Cats J. Forensic Sci. 2016 61 594 606 10.1111/1556-4029.13026 27122395 

  17. 17. Kumar H. Panigrahi M. Chhotaray S. Parida S. Chauhan A. Bhushan B. Gaur G.K. Mishra B.P. Singh R.K. Comparative analysis of five different methods to design a breed-specific SNP panel for cattle Anim. Biotechnol. 2019 9 1 7 10.1080/10495398.2019.1646266 

  18. 18. Mitchell T.M. Machine learning and data mining Commun. ACM 1999 42 30 36 10.1145/319382.319388 

  19. 19. Guinand B. Topchy A. Page K. Burnham-Curtis M. Punch W. Scribner K. Comparisons of likelihood and machine learning methods of individual classification J. Hered. 2002 93 260 269 10.1093/jhered/93.4.260 12407212 

  20. 20. Bertolini F. Galimberti G. Calò D. Schiavo G. Matassino D. Fontanesi L. Combined use of principal component analysis and random forests identify population-informative single nucleotide polymorphisms: Application in cattle breeds J. Anim. Breed. Genet. 2015 132 346 356 10.1111/jbg.12155 25781205 

  21. 21. Bertolini F. Galimberti G. Schiavo G. Mastrangelo S. Di Gerlando R. Strillacci M. Bagnato A. Portolano B. Fontanesi L. Preselection statistics and Random Forest classification identify population informative single nucleotide polymorphisms in cosmopolitan and autochthonous cattle breeds Animal 2017 12 12 19 10.1017/S1751731117001355 28643617 

  22. 22. Pasupa K. Rathasamuth W. Tongsima S. Discovery of significant porcine SNPs for swine breed identification by a hybrid of information gain, genetic algorithm, and frequency feature selection technique BMC Bioinform. 2020 21 1 28 10.1186/s12859-020-3471-4 32456608 

  23. 23. Schiavo G. Bertolini F. Galimberti G. Bovo S. Dall’Olio S. Costa L.N. Gallo M. Fontanesi L. A machine learning approach for the identification of population-informative markers from high-throughput genotyping data: Application to several pig breeds Animal 2020 14 223 232 10.1017/S1751731119002167 31603060 

  24. 24. Judge M. Kelleher M. Kearney J. Sleator R. Berry D. Ultra-low-density genotype panels for breed assignment of Angus and Hereford cattle Animal 2017 11 938 947 10.1017/S1751731116002457 27881206 

  25. 25. Yoo J. Koo B. Kim E. Heo J.M. Comparison of growth performance between crossbred Korean native chickens for hatch to 28 days CNU J. Agric. Sci. 2015 42 23 27 10.7744/cnujas.2015.42.1.023 

  26. 26. Jin S. Jayasena D. Jo C. Lee J. The breeding history and commercial development of the Korean native chicken World’s Poult. Sci. J. 2017 73 163 174 10.1017/S004393391600088X 

  27. 27. Seo D. Lee D.H. Choi N. Sudrajad P. Lee S.-H. Lee J.-H. Estimation of linkage disequilibrium and analysis of genetic diversity in Korean chicken lines PLoS ONE 2018 13 e0192063 10.1371/journal.pone.0192063 29425208 

  28. 28. Nei M. Genetic Distance between Populations Am. Nat. 1972 106 283 292 10.1086/282771 

  29. 29. Kamvar Z.N. Tabima J.F. Grünwald N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction PeerJ 2014 2 e281 10.7717/peerj.281 24688859 

  30. 30. Zheng X. Levine D. Shen J. Gogarten S.M. Laurie C. Weir B.S. A high-performance computing toolset for relatedness and principal component analysis of SNP data Bioinformatics 2012 28 3326 3328 10.1093/bioinformatics/bts606 23060615 

  31. 31. Weir B.S. Cockerham C.C. ESTIMATING F-STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE Int. J. Org. Evol. 1984 38 1358 1370 10.1111/j.1558-5646.1984.tb05657.x 

  32. 32. Chang C.C. Chow C.C. Tellier L.C. Vattikuti S. Purcell S.M. Lee J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets Gigascience 2015 4 10.1186/s13742-015-0047-8 25722852 

  33. 33. Alexander D.H. Lange K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation BMC Bioinform. 2011 12 246 10.1186/1471-2105-12-246 

  34. 34. R Core Team R: A Language and Environment for Statistical Computing R Core Team Vienna, Austria 2013 Available online: https://www.R-project.org/.2015.02.10 (accessed on 1 November 2020) 

  35. 35. Kuhn M. Building predictive models in R using the caret package J. Stat. Softw. 2008 28 1 26 Available online: http://www.math.chalmers.se/Stat/Grundutb/GU/MSA220/S18/caret-JSS.pdf.2008.11.10 (accessed on 1 November 2020) 10.18637/jss.v028.i05 27774042 

  36. 36. Breiman L. Random Forests Mach. Learn. 2001 45 5 32 10.1023/A:1010933404324 

  37. 37. Kégl B. The return of AdaBoost. MH: Multi-class Hamming trees arXiv 2013 1312.6086 

  38. 38. Singh A. Thakur N. Sharma A. A Review of Supervised Machine Learning Algorithms Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) New Delhi, India 16–18 March 2016 1310 1315 Available online: https://ieeexplore.ieee.org/abstract/document/7724478.2016.03.16 (accessed on 1 November 2020) 

  39. 39. Tharwat A. Linear vs. quadratic discriminant analysis classifier: A tutorial Int. J. Appl. Pattern Recognit. 2016 3 145 180 10.1504/IJAPR.2016.079050 

  40. 40. Altman D.G. Bland J.M. Diagnostic tests. 1: Sensitivity and specificity BMJ Br. Med. J. 1994 308 1552 10.1136/bmj.308.6943.1552 8019315 

  41. 41. Guo H. Li C. Wang X. Li Z. Sun G. Li G. Liu X. Kang X. Han R. Genetic diversity of mtDNA D-loop sequences in four native Chinese chicken breeds Br. Poult. Sci. 2017 58 490 497 10.1080/00071668.2017.1332403 28541756 

  42. 42. Dimauro C. Cellesi M. Steri R. Gaspa G. Sorbolini S. Stella A. Macciotta N.P.P. Use of the canonical discriminant analysis to select SNP markers for bovine breed assignment and traceability purposes Anim. Genet. 2013 44 377 382 10.1111/age.12021 23347105 

  43. 43. Pérez-Enciso M. Zingaretti L.M. A guide on deep learning for complex trait genomic prediction Genes 2019 10 553 10.3390/genes10070553 

  44. 44. Alves A.A.C. da Costa R.M. Bresolin T. Fernandes Júnior G.A. Espigolan R. Ribeiro A.M.F. Carvalheiro R. Albuquerque L.G.d. Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods J. Anim. Sci. 2020 10.1093/jas/skaa179 32474602 

  45. 45. Bermingham M.L. Pong-Wong R. Spiliopoulou A. Hayward C. Rudan I. Campbell H. Wright A.F. Wilson J.F. Agakov F. Navarro P. Application of high-dimensional feature selection: Evaluation for genomic prediction in man Sci. Rep. 2015 5 10312 10.1038/srep10312 25988841 

  46. 46. Ramos A.M. Megens H.J. Crooijmans R.P.M.A. Schook L.B. Groenen M.A.M. Identification of High Utility SNPs for Population Assignment and Traceability Purposes in the Pig Using High-throughput Sequencing Anim. Genet. 2011 42 613 620 10.1111/j.1365-2052.2011.02198.x 22035002 

  47. 47. Ciampolini R. Cecchi F. Spinetti I. Rocchi A. Biscarini F. The Use of Genetic Markers to Estimate Relationships between Dogs in the Course of Criminal Investigations BMC Res. Notes 2017 10 414 10.1186/s13104-017-2722-6 28818115 

  48. 48. Carroll E.L. Bruford M.W. DeWoody J.A. Leroy G. Strand A. Waits L. Wang J. Genetic and Genomic Monitoring with Minimally Invasive Sampling Methods Evol. Appl. 2018 11 1094 1119 10.1111/eva.12600 30026800 

  49. 49. Biscarini F. Marini S. Stevanato P. Broccanello C. Bellazzi R. Nazzicari N. Developing a parsimonius predictor for binary traits in sugar beet (Beta vulgaris) Mol. Breed. 2015 35 10 10.1007/s11032-015-0197-5 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로