최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Animals an open access journal from MDPI, v.11 no.1, 2021년, pp.241 -
Seo, Dongwon (Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea) , Cho, Sunghyun (seotuna@cnu.ac.kr (D.S.)) , Manjula, Prabuddha (cshcshh@cnu.ac.kr (S.C.)) , Choi, Nuri (prabuddhamanjula@yahoo.com (P.M.)) , Kim, Young-Kuk (slee46@cnu.ac.kr (S.H.L.)) , Koh, Yeong Jun (Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea) , Lee, Seung Hwan (seotuna@cnu.ac.kr (D.S.)) , Kim, Hyung-Yong (cshcshh@cnu.ac.kr (S.C.)) , Lee, Jun Heon (prabuddhamanjula@yahoo.com (P.M.))
Simple SummaryClassifying a target population at the genetic level can provide important information for the preservation and commercial use of a breed. In this study, the minimum number of markers was used in combination, to distinguish target populations based on high-density single nucleotide pol...
1. Yeung R.M. Morris J. Consumer perception of food risk in chicken meat Nutr. Food Sci. 2001 10.1108/00346650110409092
2. MAFRA (Ministry of Agriculture, Food and Rural Affairs) Major Statistics of the Ministry of Agriculture, Food and Rural Affairs 2019 Available online: http://library.mafra.go.kr/skyblueimage/28195.pdf (accessed on 1 November 2020)
5. Kim K. Seo M. Kang H. Cho S. Kim H. Seo K.-S. Application of logitboost classifier for traceability using snp chip data PLoS ONE 2015 10 e0139685 10.1371/journal.pone.0139685 26436917
7. Dalvit C. De Marchi M. Cassandro M. Genetic traceability of livestock products: A review Meat Sci. 2007 77 437 449 10.1016/j.meatsci.2007.05.027 22061927
8. Burt D.W. Chicken genome: Current status and future opportunities Genome Res. 2005 15 1692 1698 10.1101/gr.4141805 16339367
9. Hillier L.W. Miller W. Birney E. Warren W. Hardison R.C. Ponting C.P. Bork P. Burt D.W. Groenen M.A. Delany M.E. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution Nature 2014 423 695 777 10.1038/nature03154
10. Groenen M.A. Megens H.-J. Zare Y. Warren W.C. Hillier L.W. Crooijmans R.P. Vereijken A. Okimoto R. Muir W.M. Cheng H.H. The development and characterization of a 60K SNP chip for chicken BMC Genom. 2011 12 274 10.1186/1471-2164-12-274
11. Kranis A. Gheyas A.A. Boschiero C. Turner F. Yu L. Smith S. Talbot R. Pirani A. Brew F. Kaiser P. Development of a high density 600K SNP genotyping array for chicken BMC Genom. 2013 14 59 10.1186/1471-2164-14-59
12. Karniol B. Shirak A. Baruch E. Singrün C. Tal A. Cahana A. Kam M. Skalski Y. Brem G. Weller J. Development of a 25-plex SNP assay for traceability in cattle Anim. Genet. 2009 40 353 356 10.1111/j.1365-2052.2008.01846.x 19292709
13. Futema M. Bourbon M. Williams M. Humphries S.E. Clinical utility of the polygenic LDL-C SNP score in familial hypercholesterolemia Atherosclerosis 2018 277 457 463 10.1016/j.atherosclerosis.2018.06.006 30270085
14. Vignal A. Milan D. SanCristobal M. Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics Genet. Sel. Evol. 2002 34 275 305 10.1186/1297-9686-34-3-275 12081799
15. Suekawa Y. Aihara H. Araki M. Hosokawa D. Mannen H. Sasazaki S. Development of breed identification markers based on a bovine 50K SNP array Meat Sci. 2010 85 285 288 10.1016/j.meatsci.2010.01.015 20374900
16. Brooks A. Creighton E.K. Gandolfi B. Khan R. Grahn R.A. Lyons L.A. SNP Miniplexes for Individual Identification of Random-Bred Domestic Cats J. Forensic Sci. 2016 61 594 606 10.1111/1556-4029.13026 27122395
17. Kumar H. Panigrahi M. Chhotaray S. Parida S. Chauhan A. Bhushan B. Gaur G.K. Mishra B.P. Singh R.K. Comparative analysis of five different methods to design a breed-specific SNP panel for cattle Anim. Biotechnol. 2019 9 1 7 10.1080/10495398.2019.1646266
18. Mitchell T.M. Machine learning and data mining Commun. ACM 1999 42 30 36 10.1145/319382.319388
19. Guinand B. Topchy A. Page K. Burnham-Curtis M. Punch W. Scribner K. Comparisons of likelihood and machine learning methods of individual classification J. Hered. 2002 93 260 269 10.1093/jhered/93.4.260 12407212
20. Bertolini F. Galimberti G. Calò D. Schiavo G. Matassino D. Fontanesi L. Combined use of principal component analysis and random forests identify population-informative single nucleotide polymorphisms: Application in cattle breeds J. Anim. Breed. Genet. 2015 132 346 356 10.1111/jbg.12155 25781205
21. Bertolini F. Galimberti G. Schiavo G. Mastrangelo S. Di Gerlando R. Strillacci M. Bagnato A. Portolano B. Fontanesi L. Preselection statistics and Random Forest classification identify population informative single nucleotide polymorphisms in cosmopolitan and autochthonous cattle breeds Animal 2017 12 12 19 10.1017/S1751731117001355 28643617
22. Pasupa K. Rathasamuth W. Tongsima S. Discovery of significant porcine SNPs for swine breed identification by a hybrid of information gain, genetic algorithm, and frequency feature selection technique BMC Bioinform. 2020 21 1 28 10.1186/s12859-020-3471-4 32456608
23. Schiavo G. Bertolini F. Galimberti G. Bovo S. Dall’Olio S. Costa L.N. Gallo M. Fontanesi L. A machine learning approach for the identification of population-informative markers from high-throughput genotyping data: Application to several pig breeds Animal 2020 14 223 232 10.1017/S1751731119002167 31603060
24. Judge M. Kelleher M. Kearney J. Sleator R. Berry D. Ultra-low-density genotype panels for breed assignment of Angus and Hereford cattle Animal 2017 11 938 947 10.1017/S1751731116002457 27881206
26. Jin S. Jayasena D. Jo C. Lee J. The breeding history and commercial development of the Korean native chicken World’s Poult. Sci. J. 2017 73 163 174 10.1017/S004393391600088X
27. Seo D. Lee D.H. Choi N. Sudrajad P. Lee S.-H. Lee J.-H. Estimation of linkage disequilibrium and analysis of genetic diversity in Korean chicken lines PLoS ONE 2018 13 e0192063 10.1371/journal.pone.0192063 29425208
28. Nei M. Genetic Distance between Populations Am. Nat. 1972 106 283 292 10.1086/282771
29. Kamvar Z.N. Tabima J.F. Grünwald N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction PeerJ 2014 2 e281 10.7717/peerj.281 24688859
30. Zheng X. Levine D. Shen J. Gogarten S.M. Laurie C. Weir B.S. A high-performance computing toolset for relatedness and principal component analysis of SNP data Bioinformatics 2012 28 3326 3328 10.1093/bioinformatics/bts606 23060615
31. Weir B.S. Cockerham C.C. ESTIMATING F-STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE Int. J. Org. Evol. 1984 38 1358 1370 10.1111/j.1558-5646.1984.tb05657.x
32. Chang C.C. Chow C.C. Tellier L.C. Vattikuti S. Purcell S.M. Lee J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets Gigascience 2015 4 10.1186/s13742-015-0047-8 25722852
33. Alexander D.H. Lange K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation BMC Bioinform. 2011 12 246 10.1186/1471-2105-12-246
34. R Core Team R: A Language and Environment for Statistical Computing R Core Team Vienna, Austria 2013 Available online: https://www.R-project.org/.2015.02.10 (accessed on 1 November 2020)
37. Kégl B. The return of AdaBoost. MH: Multi-class Hamming trees arXiv 2013 1312.6086
38. Singh A. Thakur N. Sharma A. A Review of Supervised Machine Learning Algorithms Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) New Delhi, India 16–18 March 2016 1310 1315 Available online: https://ieeexplore.ieee.org/abstract/document/7724478.2016.03.16 (accessed on 1 November 2020)
40. Altman D.G. Bland J.M. Diagnostic tests. 1: Sensitivity and specificity BMJ Br. Med. J. 1994 308 1552 10.1136/bmj.308.6943.1552 8019315
41. Guo H. Li C. Wang X. Li Z. Sun G. Li G. Liu X. Kang X. Han R. Genetic diversity of mtDNA D-loop sequences in four native Chinese chicken breeds Br. Poult. Sci. 2017 58 490 497 10.1080/00071668.2017.1332403 28541756
42. Dimauro C. Cellesi M. Steri R. Gaspa G. Sorbolini S. Stella A. Macciotta N.P.P. Use of the canonical discriminant analysis to select SNP markers for bovine breed assignment and traceability purposes Anim. Genet. 2013 44 377 382 10.1111/age.12021 23347105
43. Pérez-Enciso M. Zingaretti L.M. A guide on deep learning for complex trait genomic prediction Genes 2019 10 553 10.3390/genes10070553
44. Alves A.A.C. da Costa R.M. Bresolin T. Fernandes Júnior G.A. Espigolan R. Ribeiro A.M.F. Carvalheiro R. Albuquerque L.G.d. Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods J. Anim. Sci. 2020 10.1093/jas/skaa179 32474602
45. Bermingham M.L. Pong-Wong R. Spiliopoulou A. Hayward C. Rudan I. Campbell H. Wright A.F. Wilson J.F. Agakov F. Navarro P. Application of high-dimensional feature selection: Evaluation for genomic prediction in man Sci. Rep. 2015 5 10312 10.1038/srep10312 25988841
46. Ramos A.M. Megens H.J. Crooijmans R.P.M.A. Schook L.B. Groenen M.A.M. Identification of High Utility SNPs for Population Assignment and Traceability Purposes in the Pig Using High-throughput Sequencing Anim. Genet. 2011 42 613 620 10.1111/j.1365-2052.2011.02198.x 22035002
47. Ciampolini R. Cecchi F. Spinetti I. Rocchi A. Biscarini F. The Use of Genetic Markers to Estimate Relationships between Dogs in the Course of Criminal Investigations BMC Res. Notes 2017 10 414 10.1186/s13104-017-2722-6 28818115
48. Carroll E.L. Bruford M.W. DeWoody J.A. Leroy G. Strand A. Waits L. Wang J. Genetic and Genomic Monitoring with Minimally Invasive Sampling Methods Evol. Appl. 2018 11 1094 1119 10.1111/eva.12600 30026800
49. Biscarini F. Marini S. Stevanato P. Broccanello C. Bellazzi R. Nazzicari N. Developing a parsimonius predictor for binary traits in sugar beet (Beta vulgaris) Mol. Breed. 2015 35 10 10.1007/s11032-015-0197-5
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.