$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation

Nature catalysis, v.4 no.3, 2021년, pp.212 - 222  

Wang, Jian ,  Kim, Se-Jun ,  Liu, Jiapeng ,  Gao, Yang ,  Choi, Subin ,  Han, Jeongwoo ,  Shin, Hyeyoung ,  Jo, Sugeun ,  Kim, Juwon ,  Ciucci, Francesco ,  Kim, Hwiho ,  Li, Qingtian ,  Yang, Wanli ,  Long, Xia ,  Yang, Shihe ,  Cho, Sung-Pyo ,  Chae, Keun Hwa ,  Kim, Min Gyu ,  Kim, Hyungjun ,  Lim, Jongwoo

초록이 없습니다.

참고문헌 (63)

  1. Körner, A., Tam, C., Bennett, S. & Gagné, J. Technology Roadmap-Hydrogen and Fuel Cells (International Energy Agency, 2015). 

  2. ACS Energy Lett. S Jin 2 1937 2017 10.1021/acsenergylett.7b00679 Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2, 1937-1938 (2017). 

  3. Chem. Soc. Rev. N-T Suen 46 337 2017 10.1039/C6CS00328A Suen, N.-T. et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337-365 (2017). 

  4. J. Am. Chem. Soc. F Song 140 7748 2018 10.1021/jacs.8b04546 Song, F. et al. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140, 7748-7759 (2018). 

  5. Nat. Catal. T Li 1 300 2018 10.1038/s41929-018-0043-3 Li, T. et al. Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nat. Catal. 1, 300-305 (2018). 

  6. J. Am. Chem. Soc. D Friebel 137 1305 2015 10.1021/ja511559d Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305-1313 (2015). 

  7. Nat. Mater. R Subbaraman 11 550 2012 10.1038/nmat3313 Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550-557 (2012). 

  8. ChemCatChem IC Man 3 1159 2011 10.1002/cctc.201000397 Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159-1165 (2011). 

  9. Science J Suntivich 334 1383 2011 10.1126/science.1212858 Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383-1385 (2011). 

  10. Nat. Commun. A Grimaud 4 2013 10.1038/ncomms3439 Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013). 

  11. Nat. Mater. E Fabbri 16 925 2017 10.1038/nmat4938 Fabbri, E. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16, 925-931 (2017). 

  12. Acc. Chem. Res. H Jiang 51 2968 2018 10.1021/acs.accounts.8b00449 Jiang, H., He, Q., Zhang, Y. & Song, L. Structural self-reconstruction of catalysts in electrocatalysis. Acc. Chem. Res. 51, 2968-2977 (2018). 

  13. Nat. Catal. A Bergmann 1 711 2018 10.1038/s41929-018-0141-2 Bergmann, A. et al. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 1, 711-719 (2018). 

  14. Adv. Mater. H Jiang 31 1805127 2019 10.1002/adma.201805127 Jiang, H. et al. Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 31, 1805127 (2019). 

  15. Nat. Commun. A Bergmann 6 2015 10.1038/ncomms9625 Bergmann, A. et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6, 8625 (2015). 

  16. Science LC Seitz 353 1011 2016 10.1126/science.aaf5050 Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011-1014 (2016). 

  17. Nat. Energy DY Chung 5 222 2020 10.1038/s41560-020-0576-y Chung, D. Y. et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 5, 222-230 (2020). 

  18. Nat. Chem. A Grimaud 9 457 2017 10.1038/nchem.2695 Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457-465 (2017). 

  19. Chem B Hua 4 2902 2018 10.1016/j.chempr.2018.09.012 Hua, B. et al. Activating p-blocking centers in perovskite for efficient water splitting. Chem 4, 2902-2916 (2018). 

  20. ACS Catal. J Wang 8 364 2018 10.1021/acscatal.7b02650 Wang, J. et al. Water splitting with an enhanced bifunctional double perovskite. ACS Catal. 8, 364-371 (2018). 

  21. Nat. Catal. T Wu 2 763 2019 10.1038/s41929-019-0325-4 Wu, T. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763-772 (2019). 

  22. ACS Catal. S Zhang 9 7389 2019 10.1021/acscatal.9b00928 Zhang, S. et al. Spontaneous delithiation under operando condition triggers formation of an amorphous active layer in spinel cobalt oxides electrocatalyst toward oxygen evolution. ACS Catal. 9, 7389-7397 (2019). 

  23. Chem. Mater. MS Burke 27 7549 2015 10.1021/acs.chemmater.5b03148 Burke, M. S., Enman, L. J., Batchellor, A. S., Zou, S. & Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27, 7549-7558 (2015). 

  24. J. Am. Chem. Soc. MS Burke 137 3638 2015 10.1021/jacs.5b00281 Burke, M. S., Kast, M. G., Trotochaud, L., Smith, A. M. & Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137, 3638-3648 (2015). 

  25. J. Am. Chem. Soc. L Trotochaud 136 6744 2014 10.1021/ja502379c Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744-6753 (2014). 

  26. Adv. Energy Mater. X Zheng 9 1803482 2019 10.1002/aenm.201803482 Zheng, X. et al. Electronic structure engineering of LiCoO2 toward enhanced oxygen electrocatalysis. Adv. Energy Mater. 9, 1803482 (2019). 

  27. Nat. Commun. T Maiyalagan 5 2014 10.1038/ncomms4949 Maiyalagan, T., Jarvis, K. A., Therese, S., Ferreira, P. J. & Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 5, 3949 (2014). 

  28. Angew. Chem. Int. Ed. GP Gardner 51 1616 2012 10.1002/anie.201107625 Gardner, G. P. et al. Structural requirements in lithium cobalt oxides for the catalytic oxidation of water. Angew. Chem. Int. Ed. 51, 1616-1619 (2012). 

  29. Nat. Commun. Z Lu 5 2014 10.1038/ncomms5345 Lu, Z. et al. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 5, 4345 (2014). 

  30. J. Am. Chem. Soc. Z Lu 139 6270 2017 10.1021/jacs.7b02622 Lu, Z. et al. Identifying the active surfaces of electrochemically tuned LiCoO2 for oxygen evolution reaction. J. Am. Chem. Soc. 139, 6270-6276 (2017). 

  31. Electrochim. Acta G Ceder 45 131 1999 10.1016/S0013-4686(99)00199-1 Ceder, G. & Van der Ven, A. Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochim. Acta 45, 131-150 (1999). 

  32. Energy Environ. Sci. YS Meng 2 589 2009 10.1039/b901825e Meng, Y. S. & Arroyo-de Dompablo, M. E. First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ. Sci. 2, 589-609 (2009). 

  33. Energy Environ. Sci. G Gardner 9 184 2016 10.1039/C5EE02195B Gardner, G. et al. Structural basis for differing electrocatalytic water oxidation by the cubic, layered and spinel forms of lithium cobalt oxides. Energy Environ. Sci. 9, 184-192 (2016). 

  34. Nano Lett. X Lu 12 6192 2012 10.1021/nl303036e Lu, X. et al. New insight into the atomic structure of electrochemically delithiated O3-Li(1-x)CoO2 (0 ≤ x ≤ 0.5) nanoparticles. Nano Lett. 12, 6192-6197 (2012). 

  35. RSC Adv. G Li 5 107326 2015 10.1039/C5RA21258H Li, G., Zhou, S., Wang, P. & Zhao, J. Halogen-doping in LiCoO2 cathode materials for Li-ion batteries: insights from ab initio calculations. RSC Adv. 5, 107326-107332 (2015). 

  36. J. Am. Chem. Soc. B-J Kim 141 5231 2019 10.1021/jacs.8b12101 Kim, B.-J. et al. Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction. J. Am. Chem. Soc. 141, 5231-5240 (2019). 

  37. J. Solid State Chem. CJ Patridge 203 134 2013 10.1016/j.jssc.2013.04.008 Patridge, C. J., Love, C. T., Swider-Lyons, K. E., Twigg, M. E. & Ramaker, D. E. In-situ X-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO2. J. Solid State Chem. 203, 134-144 (2013). 

  38. J. Power Sources I Nakai 68 536 1997 10.1016/S0378-7753(97)02598-6 Nakai, I. et al. X-ray absorption fine structure and neutron diffraction analyses of de-intercalation behavior in the LiCoO2 and LiNiO2 systems. J. Power Sources 68, 536-539 (1997). 

  39. J. Phys. Chem. B W-S Yoon 106 2526 2002 10.1021/jp013735e Yoon, W.-S. et al. Oxygen contribution on Li-ion intercalation−deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J. Phys. Chem. B 106, 2526-2532 (2002). 

  40. J. Power Sources C-H Chen 174 938 2007 10.1016/j.jpowsour.2007.06.083 Chen, C.-H. et al. Soft X-ray absorption spectroscopy studies on the chemically delithiated commercial LiCoO2 cathode material. J. Power Sources 174, 938-943 (2007). 

  41. J. Power Sources J Ismail 36 507 1991 10.1016/0378-7753(91)80076-A Ismail, J., Ahmed, M. F. & Vishnu Kamath, P. Cyclic voltammetric studies of pure and doped films of cobalt hydroxide in 1 M KOH. J. Power Sources 36, 507-516 (1991). 

  42. Nat. Commun. X Shan 7 2016 10.1038/ncomms13370 Shan, X. et al. Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nat. Commun. 7, 13370 (2016). 

  43. J. Electrochem. Soc. JN Reimers 139 2091 1992 10.1149/1.2221184 Reimers, J. N. & Dahn, J. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091-2097 (1992). 

  44. J. Electrochem. Soc. B Garcia 144 1179 1997 10.1149/1.1837569 Garcia, B., Farcy, J., Pereira-Ramos, J. & Baffier, N. Electrochemical properties of low temperature crystallized LiCoO2. J. Electrochem. Soc. 144, 1179-1184 (1997). 

  45. ChemPhysChem M Baumung 20 2981 2019 10.1002/cphc.201900601 Baumung, M., Kollenbach, L., Xi, L. & Risch, M. Undesired bulk oxidation of LiMn2O4 increases overpotential of electrocatalytic water oxidation in lithium hydroxide electrolytes. ChemPhysChem 20, 2981-2988 (2019). 

  46. Nat. Commun. J Zhou 11 2020 10.1038/s41467-020-15925-2 Zhou, J. et al. Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction. Nat. Commun. 11, 1984 (2020). 

  47. J. Power Sources W Yang 389 188 2018 10.1016/j.jpowsour.2018.04.018 Yang, W. & Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 389, 188-197 (2018). 

  48. Nat. Energy J-N Zhang 4 594 2019 10.1038/s41560-019-0409-z Zhang, J.-N. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4, 594-603 (2019). 

  49. Nat. Mater. A Grimaud 15 121 2016 10.1038/nmat4551 Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J.-M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121-126 (2016). 

  50. J. Am. Chem. Soc. SW Lee 134 16959 2012 10.1021/ja307814j Lee, S. W. et al. The nature of lithium battery materials under oxygen evolution reaction conditions. J. Am. Chem. Soc. 134, 16959-16962 (2012). 

  51. J. Synchrotron Radiat. M Newville 8 322 2001 10.1107/S0909049500016964 Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322-324 (2001). 

  52. Phys. Rev. B G Kresse 54 11169 1996 10.1103/PhysRevB.54.11169 Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). 

  53. Comput. Mater. Sci. G Kresse 6 15 1996 10.1016/0927-0256(96)00008-0 Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996). 

  54. Phys. Rev. B PE Blöchl 50 17953 1994 10.1103/PhysRevB.50.17953 Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). 

  55. Phys. Rev. Lett. JP Perdew 77 3865 1996 10.1103/PhysRevLett.77.3865 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). 

  56. Phys. Rev. B F Zhou 70 23521 2004 10.1103/PhysRevB.70.235121 Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys. Rev. B 70, 23521 (2004). 

  57. J. Chem. Phys. M Yu 134 064111 2011 10.1063/1.3553716 Yu, M. & Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 134, 064111 (2011). 

  58. J. Am. Chem. Soc. M Bajdich 135 13521 2013 10.1021/ja405997s Bajdich, M., García-Mota, M., Vojvodic, A., Nørskov, J. K. & Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521-13530 (2013). 

  59. Sci. Rep. D Su 4 2014 10.1038/srep05767 Su, D., Dou, S. & Wang, G. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries. Sci. Rep. 4, 5767 (2014). 

  60. ACS Catal. F Reikowski 9 3811 2019 10.1021/acscatal.8b04823 Reikowski, F. et al. Operando surface X-ray diffraction studies of structurally defined Co3O4 and CoOOH thin films during oxygen evolution. ACS Catal. 9, 3811-3821 (2019). 

  61. J. Phys. Chem. C. M García-Mota 116 21077 2012 10.1021/jp306303y García-Mota, M. et al. Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C. 116, 21077-21082 (2012). 

  62. Phys. Rev. B HJ Monkhorst 13 5188 1976 10.1103/PhysRevB.13.5188 Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188-5192 (1976). 

  63. J. Chem. Phys. K Mathew 140 084106 2014 10.1063/1.4865107 Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로