최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature catalysis, v.4 no.3, 2021년, pp.212 - 222
Wang, Jian , Kim, Se-Jun , Liu, Jiapeng , Gao, Yang , Choi, Subin , Han, Jeongwoo , Shin, Hyeyoung , Jo, Sugeun , Kim, Juwon , Ciucci, Francesco , Kim, Hwiho , Li, Qingtian , Yang, Wanli , Long, Xia , Yang, Shihe , Cho, Sung-Pyo , Chae, Keun Hwa , Kim, Min Gyu , Kim, Hyungjun , Lim, Jongwoo
초록이 없습니다.
Körner, A., Tam, C., Bennett, S. & Gagné, J. Technology Roadmap-Hydrogen and Fuel Cells (International Energy Agency, 2015).
ACS Energy Lett. S Jin 2 1937 2017 10.1021/acsenergylett.7b00679 Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2, 1937-1938 (2017).
Chem. Soc. Rev. N-T Suen 46 337 2017 10.1039/C6CS00328A Suen, N.-T. et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337-365 (2017).
J. Am. Chem. Soc. F Song 140 7748 2018 10.1021/jacs.8b04546 Song, F. et al. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140, 7748-7759 (2018).
Nat. Catal. T Li 1 300 2018 10.1038/s41929-018-0043-3 Li, T. et al. Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nat. Catal. 1, 300-305 (2018).
J. Am. Chem. Soc. D Friebel 137 1305 2015 10.1021/ja511559d Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305-1313 (2015).
Nat. Mater. R Subbaraman 11 550 2012 10.1038/nmat3313 Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550-557 (2012).
ChemCatChem IC Man 3 1159 2011 10.1002/cctc.201000397 Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159-1165 (2011).
Science J Suntivich 334 1383 2011 10.1126/science.1212858 Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383-1385 (2011).
Nat. Commun. A Grimaud 4 2013 10.1038/ncomms3439 Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013).
Nat. Mater. E Fabbri 16 925 2017 10.1038/nmat4938 Fabbri, E. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16, 925-931 (2017).
Acc. Chem. Res. H Jiang 51 2968 2018 10.1021/acs.accounts.8b00449 Jiang, H., He, Q., Zhang, Y. & Song, L. Structural self-reconstruction of catalysts in electrocatalysis. Acc. Chem. Res. 51, 2968-2977 (2018).
Nat. Catal. A Bergmann 1 711 2018 10.1038/s41929-018-0141-2 Bergmann, A. et al. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 1, 711-719 (2018).
Adv. Mater. H Jiang 31 1805127 2019 10.1002/adma.201805127 Jiang, H. et al. Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 31, 1805127 (2019).
Nat. Commun. A Bergmann 6 2015 10.1038/ncomms9625 Bergmann, A. et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6, 8625 (2015).
Science LC Seitz 353 1011 2016 10.1126/science.aaf5050 Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011-1014 (2016).
Nat. Energy DY Chung 5 222 2020 10.1038/s41560-020-0576-y Chung, D. Y. et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 5, 222-230 (2020).
Nat. Chem. A Grimaud 9 457 2017 10.1038/nchem.2695 Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457-465 (2017).
Chem B Hua 4 2902 2018 10.1016/j.chempr.2018.09.012 Hua, B. et al. Activating p-blocking centers in perovskite for efficient water splitting. Chem 4, 2902-2916 (2018).
ACS Catal. J Wang 8 364 2018 10.1021/acscatal.7b02650 Wang, J. et al. Water splitting with an enhanced bifunctional double perovskite. ACS Catal. 8, 364-371 (2018).
Nat. Catal. T Wu 2 763 2019 10.1038/s41929-019-0325-4 Wu, T. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763-772 (2019).
ACS Catal. S Zhang 9 7389 2019 10.1021/acscatal.9b00928 Zhang, S. et al. Spontaneous delithiation under operando condition triggers formation of an amorphous active layer in spinel cobalt oxides electrocatalyst toward oxygen evolution. ACS Catal. 9, 7389-7397 (2019).
Chem. Mater. MS Burke 27 7549 2015 10.1021/acs.chemmater.5b03148 Burke, M. S., Enman, L. J., Batchellor, A. S., Zou, S. & Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27, 7549-7558 (2015).
J. Am. Chem. Soc. MS Burke 137 3638 2015 10.1021/jacs.5b00281 Burke, M. S., Kast, M. G., Trotochaud, L., Smith, A. M. & Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137, 3638-3648 (2015).
J. Am. Chem. Soc. L Trotochaud 136 6744 2014 10.1021/ja502379c Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744-6753 (2014).
Adv. Energy Mater. X Zheng 9 1803482 2019 10.1002/aenm.201803482 Zheng, X. et al. Electronic structure engineering of LiCoO2 toward enhanced oxygen electrocatalysis. Adv. Energy Mater. 9, 1803482 (2019).
Nat. Commun. T Maiyalagan 5 2014 10.1038/ncomms4949 Maiyalagan, T., Jarvis, K. A., Therese, S., Ferreira, P. J. & Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 5, 3949 (2014).
Angew. Chem. Int. Ed. GP Gardner 51 1616 2012 10.1002/anie.201107625 Gardner, G. P. et al. Structural requirements in lithium cobalt oxides for the catalytic oxidation of water. Angew. Chem. Int. Ed. 51, 1616-1619 (2012).
Nat. Commun. Z Lu 5 2014 10.1038/ncomms5345 Lu, Z. et al. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 5, 4345 (2014).
J. Am. Chem. Soc. Z Lu 139 6270 2017 10.1021/jacs.7b02622 Lu, Z. et al. Identifying the active surfaces of electrochemically tuned LiCoO2 for oxygen evolution reaction. J. Am. Chem. Soc. 139, 6270-6276 (2017).
Electrochim. Acta G Ceder 45 131 1999 10.1016/S0013-4686(99)00199-1 Ceder, G. & Van der Ven, A. Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochim. Acta 45, 131-150 (1999).
Energy Environ. Sci. YS Meng 2 589 2009 10.1039/b901825e Meng, Y. S. & Arroyo-de Dompablo, M. E. First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ. Sci. 2, 589-609 (2009).
Energy Environ. Sci. G Gardner 9 184 2016 10.1039/C5EE02195B Gardner, G. et al. Structural basis for differing electrocatalytic water oxidation by the cubic, layered and spinel forms of lithium cobalt oxides. Energy Environ. Sci. 9, 184-192 (2016).
Nano Lett. X Lu 12 6192 2012 10.1021/nl303036e Lu, X. et al. New insight into the atomic structure of electrochemically delithiated O3-Li(1-x)CoO2 (0 ≤ x ≤ 0.5) nanoparticles. Nano Lett. 12, 6192-6197 (2012).
RSC Adv. G Li 5 107326 2015 10.1039/C5RA21258H Li, G., Zhou, S., Wang, P. & Zhao, J. Halogen-doping in LiCoO2 cathode materials for Li-ion batteries: insights from ab initio calculations. RSC Adv. 5, 107326-107332 (2015).
J. Am. Chem. Soc. B-J Kim 141 5231 2019 10.1021/jacs.8b12101 Kim, B.-J. et al. Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction. J. Am. Chem. Soc. 141, 5231-5240 (2019).
J. Solid State Chem. CJ Patridge 203 134 2013 10.1016/j.jssc.2013.04.008 Patridge, C. J., Love, C. T., Swider-Lyons, K. E., Twigg, M. E. & Ramaker, D. E. In-situ X-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO2. J. Solid State Chem. 203, 134-144 (2013).
J. Power Sources I Nakai 68 536 1997 10.1016/S0378-7753(97)02598-6 Nakai, I. et al. X-ray absorption fine structure and neutron diffraction analyses of de-intercalation behavior in the LiCoO2 and LiNiO2 systems. J. Power Sources 68, 536-539 (1997).
J. Phys. Chem. B W-S Yoon 106 2526 2002 10.1021/jp013735e Yoon, W.-S. et al. Oxygen contribution on Li-ion intercalation−deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J. Phys. Chem. B 106, 2526-2532 (2002).
J. Power Sources C-H Chen 174 938 2007 10.1016/j.jpowsour.2007.06.083 Chen, C.-H. et al. Soft X-ray absorption spectroscopy studies on the chemically delithiated commercial LiCoO2 cathode material. J. Power Sources 174, 938-943 (2007).
J. Power Sources J Ismail 36 507 1991 10.1016/0378-7753(91)80076-A Ismail, J., Ahmed, M. F. & Vishnu Kamath, P. Cyclic voltammetric studies of pure and doped films of cobalt hydroxide in 1 M KOH. J. Power Sources 36, 507-516 (1991).
Nat. Commun. X Shan 7 2016 10.1038/ncomms13370 Shan, X. et al. Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nat. Commun. 7, 13370 (2016).
J. Electrochem. Soc. JN Reimers 139 2091 1992 10.1149/1.2221184 Reimers, J. N. & Dahn, J. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091-2097 (1992).
J. Electrochem. Soc. B Garcia 144 1179 1997 10.1149/1.1837569 Garcia, B., Farcy, J., Pereira-Ramos, J. & Baffier, N. Electrochemical properties of low temperature crystallized LiCoO2. J. Electrochem. Soc. 144, 1179-1184 (1997).
ChemPhysChem M Baumung 20 2981 2019 10.1002/cphc.201900601 Baumung, M., Kollenbach, L., Xi, L. & Risch, M. Undesired bulk oxidation of LiMn2O4 increases overpotential of electrocatalytic water oxidation in lithium hydroxide electrolytes. ChemPhysChem 20, 2981-2988 (2019).
Nat. Commun. J Zhou 11 2020 10.1038/s41467-020-15925-2 Zhou, J. et al. Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction. Nat. Commun. 11, 1984 (2020).
J. Power Sources W Yang 389 188 2018 10.1016/j.jpowsour.2018.04.018 Yang, W. & Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 389, 188-197 (2018).
Nat. Energy J-N Zhang 4 594 2019 10.1038/s41560-019-0409-z Zhang, J.-N. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4, 594-603 (2019).
Nat. Mater. A Grimaud 15 121 2016 10.1038/nmat4551 Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J.-M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121-126 (2016).
J. Am. Chem. Soc. SW Lee 134 16959 2012 10.1021/ja307814j Lee, S. W. et al. The nature of lithium battery materials under oxygen evolution reaction conditions. J. Am. Chem. Soc. 134, 16959-16962 (2012).
J. Synchrotron Radiat. M Newville 8 322 2001 10.1107/S0909049500016964 Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322-324 (2001).
Phys. Rev. B G Kresse 54 11169 1996 10.1103/PhysRevB.54.11169 Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
Comput. Mater. Sci. G Kresse 6 15 1996 10.1016/0927-0256(96)00008-0 Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996).
Phys. Rev. B PE Blöchl 50 17953 1994 10.1103/PhysRevB.50.17953 Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
Phys. Rev. Lett. JP Perdew 77 3865 1996 10.1103/PhysRevLett.77.3865 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Phys. Rev. B F Zhou 70 23521 2004 10.1103/PhysRevB.70.235121 Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys. Rev. B 70, 23521 (2004).
J. Chem. Phys. M Yu 134 064111 2011 10.1063/1.3553716 Yu, M. & Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 134, 064111 (2011).
J. Am. Chem. Soc. M Bajdich 135 13521 2013 10.1021/ja405997s Bajdich, M., García-Mota, M., Vojvodic, A., Nørskov, J. K. & Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521-13530 (2013).
Sci. Rep. D Su 4 2014 10.1038/srep05767 Su, D., Dou, S. & Wang, G. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries. Sci. Rep. 4, 5767 (2014).
ACS Catal. F Reikowski 9 3811 2019 10.1021/acscatal.8b04823 Reikowski, F. et al. Operando surface X-ray diffraction studies of structurally defined Co3O4 and CoOOH thin films during oxygen evolution. ACS Catal. 9, 3811-3821 (2019).
J. Phys. Chem. C. M García-Mota 116 21077 2012 10.1021/jp306303y García-Mota, M. et al. Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C. 116, 21077-21082 (2012).
Phys. Rev. B HJ Monkhorst 13 5188 1976 10.1103/PhysRevB.13.5188 Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188-5192 (1976).
J. Chem. Phys. K Mathew 140 084106 2014 10.1063/1.4865107 Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.