$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Theoretical Analysis of a Mathematical Relation between Driving Pressures in Membrane-Based Desalting Processes 원문보기

Membranes, v.11 no.3, 2021년, pp.220 -   

Chae, Sung Ho (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea) ,  Kim, Joon Ha (kha5s@gm.gist.ac.kr)

EDISON 유발 논문

계산과학플랫폼 EDISON을 활용하여 발표된 논문

Abstract AI-Helper 아이콘AI-Helper

Osmotic and hydraulic pressures are both indispensable for operating membrane-based desalting processes, such as forward osmosis (FO), pressure-retarded osmosis (PRO), and reverse osmosis (RO). However, a clear relation between these driving pressures has not thus far been identified; hence, the eff...

주제어

참고문헌 (60)

  1. 1. Chae S.H. Kim J. Kim Y.M. Kim S.-H. Kim J.H. Economic analysis on environmentally sound brine disposal with RO and RO-hybrid processes Desalin. Water Treat. 2017 78 1 11 10.5004/dwt.2017.20659 

  2. 2. Lee C. Chae S.H. Yang E. Kim S. Kim J.H. Kim I.S. A comprehensive review of the feasibility of pressure retarded osmosis: Recent technological advances and industrial efforts towards commercialization Desalination 2020 491 10.1016/j.desal.2020.114501 

  3. 3. Seo J. Kim Y.M. Chae S.H. Lim S.J. Park H. Kim J.H. An optimization strategy for a forward osmosis-reverse osmosis hybrid process for wastewater reuse and seawater desalination: A modeling study Desalination 2019 463 40 49 10.1016/j.desal.2019.03.012 

  4. 4. Touati K. Tadeo F. Chae S.H. Kim J.H. Alvarez-Silva O. Pressure Retarded Osmosis: Renewable Energy Generation and Recovery Academic Press Cambridge, MA, USA 2017 

  5. 5. Chae S.H. Seo J. Kim J. Kim Y.M. Kim J.H. A simulation study with a new performance index for pressure-retarded osmosis processes hybridized with seawater reverse osmosis and membrane distillation Desalination 2018 444 118 128 10.1016/j.desal.2018.07.019 

  6. 6. Kramer E.M. Myers D.R. Osmosis is not driven by water dilution Trends Plant Sci. 2013 18 195 197 10.1016/j.tplants.2012.12.001 23298880 

  7. 7. Achilli A. Childress A.E. Pressure retarded osmosis: From the vision of Sidney Loeb to the first prototype installation Review Desalination 2010 261 205 211 10.1016/j.desal.2010.06.017 

  8. 8. Xu Y. Peng X. Tang C.Y. Fu Q.S. Nie S. Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module J. Membr. Sci. 2010 348 298 309 10.1016/j.memsci.2009.11.013 

  9. 9. Blankert B. Kim Y. Vrouwenvelder H. Ghaffour N. Facultative hybrid RO-PRO concept to improve economic performance of PRO: Feasibility and maximizing efficiency Desalination 2020 478 10.1016/j.desal.2019.114268 

  10. 10. Benjamin J. Arias M.E. Zhang Q. A techno-economic process model for pressure retarded osmosis based energy recovery in desalination plants Desalination 2020 476 10.1016/j.desal.2019.114218 

  11. 11. Henry C.J. Brant J.A. Influence of membrane characteristics on performance in soil-membrane-water subsurface desalination irrigation systems J. Water Process Eng. 2019 32 10.1016/j.jwpe.2019.100984 

  12. 12. Bacchin P. Colloid-interface interactions initiate osmotic flow dynamics Colloids Surf. A Physicochem. Eng. Asp. 2017 533 147 158 10.1016/j.colsurfa.2017.08.034 

  13. 13. Martin J.T. Kolliopoulos G. Papangelakis V.G. An improved model for membrane characterization in forward osmosis J. Membr. Sci. 2019 10.1016/j.memsci.2019.117668 

  14. 14. Abdelkader B. Sharqawy M.H. Temperature Effects and Entropy Generation of Pressure Retarded Osmosis Process Entropy 2019 21 1158 10.3390/e21121158 

  15. 15. Wang Q. Zhou Z. Li J. Tang Q. Hu Y. Investigation of the reduced specific energy consumption of the RO-PRO hybrid system based on temperature-enhanced pressure retarded osmosis J. Membr. Sci. 2019 581 439 452 10.1016/j.memsci.2019.03.079 

  16. 16. Sharqawy M.H. Banchik L.D. Lienhard J.H. Effectiveness–mass transfer units (ε–MTU) model of an ideal pressure retarded osmosis membrane mass exchanger J. Membr. Sci. 2013 445 211 219 10.1016/j.memsci.2013.06.027 

  17. 17. He W. Wang Y. Shaheed M.H. Modelling of osmotic energy from natural salt gradients due to pressure retarded osmosis: Effects of detrimental factors and flow schemes J. Membr. Sci. 2014 471 247 257 10.1016/j.memsci.2014.08.002 

  18. 18. Nelson P.C. Biological Physics: Energy, Information, Life W. H. Freeman New York, NY, USA 2004 

  19. 19. Granik V.T. Smith B.R. Lee S.C. Ferrari M. Osmotic Pressures for Binary Solutions of Non-electrolytes Biomed. Microdevices 2002 4 309 321 10.1023/A:1020910407962 

  20. 20. Huang H.-C. Xie R. New Osmosis Law and Theory: The New Formula that Replaces van’t Hoff Osmotic Pressure Equation arXiv 2012 1201.0912 

  21. 21. Wilson A.D. Stewart F.F. Deriving osmotic pressures of draw solutes used in osmotically driven membrane processes J. Membr. Sci. 2013 431 205 211 10.1016/j.memsci.2012.12.042 

  22. 22. Luo Y. Roux B. Simulation of Osmotic Pressure in Concentrated Aqueous Salt Solutions J. Phys. Chem. Lett. 2009 1 183 189 10.1021/jz900079w 

  23. 23. Oh Y. Lee S. Elimelech M. Lee S. Hong S. Effect of hydraulic pressure and membrane orientation on water flux and reverse solute flux in pressure assisted osmosis J. Membr. Sci. 2014 465 159 166 10.1016/j.memsci.2014.04.008 

  24. 24. Blandin G. Myat D.T. Verliefde A.R.D. Le-Clech P. Pressure assisted osmosis using nanofiltration membranes (PAO-NF): Towards higher efficiency osmotic processes J. Membr. Sci. 2017 533 250 260 10.1016/j.memsci.2017.03.048 

  25. 25. Brian P. Mass Transport in Reverse Osmosis Merten MIT Press Cambridge, MA, USA 1966 

  26. 26. Basdmadjian D. Mass Transfer Principles and Applications CRC Press Boca Raton, FL, USA 2004 

  27. 27. Michaels A.S. New separation technique for the CPI Chem. Eng. Prog. 1968 64 31 43 

  28. 28. Wijmans J.G. Baker R.W. The solution-diffusion model: A review J. Membr. Sci. 1995 107 1 21 10.1016/0376-7388(95)00102-I 

  29. 29. Bird R.B. Stewart W.E. Lightfoot E.N. Transport Phenomena 2nd ed. JohnWiley & Sons Hoboken, NJ, USA 2006 

  30. 30. Brian P.L.T. Concentration polarization in reverse osmosis desalination with variable flux and incomplete salt rejection IEc Fundam. 1965 4 439 445 10.1021/i160016a014 

  31. 31. Sourirajan S.K.S. Concentration Polarization Effects in Reverse Osmosis Using Porous Cellulose Acetate Membranes L Ec Process Des. Dev. 1968 7 41 48 

  32. 32. Cohen-Tanugi D. McGovern R.K. Dave S.H. Lienhard J.H. Grossman J.C. Quantifying the potential of ultra-permeable membranes for water desalination Energy Environ. Sci. 2014 7 1134 1141 10.1039/C3EE43221A 

  33. 33. World Health Organization Total Dissolved Solids in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality WHO Geneva, Switzerland 2003 

  34. 34. Lim S.J. Kim Y.M. Park H. Ki S. Jeong K. Seo J. Chae S.H. Kim J.H. Enhancing accuracy of membrane fouling prediction using hybrid machine learning models Desalin. Water Treat. 2019 146 22 28 10.5004/dwt.2019.23444 

  35. 35. Koutsou C.P. Yiantsios S.G. Karabelas A.J. Direct numerical simulation of flow in spacer-filled channels: Effect of spacer geometrical characteristics J. Membr. Sci. 2007 291 53 69 10.1016/j.memsci.2006.12.032 

  36. 36. Ruiz-García A. Nuez I. Performance Assessment of SWRO Spiral-Wound Membrane Modules with Different Feed Spacer Dimensions Processes 2020 8 692 10.3390/pr8060692 

  37. 37. Haidari A.H. Heijman S.G.J. van der Meer W.G.J. Optimal design of spacers in reverse osmosis Sep. Purif. Technol. 2018 192 441 456 10.1016/j.seppur.2017.10.042 

  38. 38. Kim J. Jeong K. Park M. Shon H. Kim J. Recent Advances in Osmotic Energy Generation via Pressure-Retarded Osmosis (PRO): A Review Energies 2015 8 11821 11845 10.3390/en81011821 

  39. 39. Chae S.H. Kim Y.M. Park H. Seo J. Lim S.J. Kim J.H. Modeling and Simulation Studies Analyzing the Pressure-Retarded Osmosis (PRO) and PRO-Hybridized Processes Energies 2019 12 243 10.3390/en12020243 

  40. 40. Cheng Z.L. Chung T.-S. Mass transport of various membrane configurations in pressure retarded osmosis (PRO) J. Membr. Sci. 2017 537 160 176 10.1016/j.memsci.2017.05.008 

  41. 41. Atkins P.W. Julio D.P. Atkins’ Physical Chemistry 8th ed. W.H. Freeman New York, NY, USA 2006 

  42. 42. Kargol A. Modified Kedem–Katchalsky equations and their applications J. Membr. Sci. 2000 174 43 53 10.1016/S0376-7388(00)00367-7 

  43. 43. Kedem O. Katchalsky A. Thermodynamics analysis of the permeability of biological membranes to non-electrolytes Biochim. Et Biophys. Acta 1958 27 229 246 10.1016/0006-3002(58)90330-5 

  44. 44. Pietruszka M. Jarzyńska M. Derivation of Practical Kedem Katchalsky Equations for Membrane Substance Transport Old New Concepts Phys. 2008 5 459 474 10.2478/v10005-007-0041-8 

  45. 45. Spiegler K.S. Kedem O. Thermodynamics of hyperfiltration (reverse osmosis) Criteria for efficient membranes Desalination 1966 1 311 326 10.1016/S0011-9164(00)80018-1 

  46. 46. Ahmed F.N. Modified Spiegler-Kedem Model to Predict the Rejection and Flux of Nanofiltration Processes at High NaCl Concentrations Master’s Thesis University of Ottawa Ottawa, ON, Canada 2013 

  47. 47. Attarde D. Jain M. Gupta S.K. Modeling of a forward osmosis and a pressure-retarded osmosis spiral wound module using the Spiegler-Kedem model and experimental validation Sep. Purif. Technol. 2016 164 182 197 10.1016/j.seppur.2016.03.039 

  48. 48. Field R. Wu J.J. On boundary layers and the attenuation of driving forces in forward osmosis and other membrane processes Desalination 2018 s429 167 174 10.1016/j.desal.2017.12.001 

  49. 49. Morrow C.P. Childress A.E. Evidence, Determination, and Implications of Membrane-Independent Limiting Flux in Forward Osmosis Systems Environ. Sci. Technol. 2019 53 4380 4388 10.1021/acs.est.8b05925 30887806 

  50. 50. Bui N.-N. Arena J.T. McCutcheon J.R. Proper accounting of mass transfer resistances in forward osmosis: Improving the accuracy of model predictions of structural parameter J. Membr. Sci. 2015 492 289 302 10.1016/j.memsci.2015.02.001 

  51. 51. Wang Y. Zhang M. Liu Y. Xiao Q. Xu S. Quantitative evaluation of concentration polarization under different operating conditions for forward osmosis process Desalination 2016 398 106 113 10.1016/j.desal.2016.07.015 

  52. 52. Wu J.J. Field R.W. On the understanding and feasibility of “Breakthrough” Osmosis Sci. Rep. 2019 9 16464 10.1038/s41598-019-53417-6 31712620 

  53. 53. Nagy E. Hegedüs I. Tow E.W. Lienhard V.J.H. Effect of fouling on performance of pressure retarded osmosis (PRO) and forward osmosis (FO) J. Membr. Sci. 2018 565 450 462 10.1016/j.memsci.2018.08.039 

  54. 54. Nagy E. A general, resistance-in-series, salt- and water flux models for forward osmosis and pressure-retarded osmosis for energy generation J. Membr. Sci. 2014 460 71 81 10.1016/j.memsci.2014.02.021 

  55. 55. Field R.W. Wu J.J. Mass transfer limitations in forward osmosis: Are some potential applications overhyped? Desalination 2013 318 118 124 10.1016/j.desal.2013.01.025 

  56. 56. Yip N.Y. Tiraferri A. Phillip W.A. Schiffman J.D. Hoover L.A. Kim Y.C. Elimelech M. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients Environ. Sci. Technol. 2011 45 4360 4369 10.1021/es104325z 21491936 

  57. 57. Kook S. Swetha C.D. Lee J. Lee C. Fane T. Kim I.S. Forward Osmosis Membranes under Null-Pressure Condition: Do Hydraulic and Osmotic Pressures Have Identical Nature? Environ. Sci. Technol. 2018 52 3556 3566 10.1021/acs.est.7b05265 29465233 

  58. 58. Zeghadnia L. Robert J.L. Achour B. Explicit solutions for turbulent flow friction factor: A review, assessment and approaches classification Ain Shams Eng. J. 2019 10 243 252 10.1016/j.asej.2018.10.007 

  59. 59. Zavitsas A.A. Properties of Water Solutions of Electrolytes and Nonelectrolytes J. Phys. Chem. B 2001 105 7805 7817 10.1021/jp011053l 

  60. 60. Davenport D.M. Deshmukh A. Werber J.R. Elimelech M. High-Pressure Reverse Osmosis for Energy-Efficient Hypersaline Brine Desalination: Current Status, Design Considerations, and Research Needs Environ. Sci. Technol. Lett. 2018 5 467 475 10.1021/acs.estlett.8b00274 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로