$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Genetic Approaches Using Zebrafish to Study the Microbiota–Gut–Brain Axis in Neurological Disorders 원문보기

Cells, v.10 no.3, 2021년, pp.566 -   

Lee, Jae-Geun (Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea) ,  Cho, Hyun-Ju (jglee89@kribb.re.kr (J.-G.L.)) ,  Jeong, Yun-Mi (alleles@kribb.re.kr (H.-J.C.)) ,  Lee, Jeong-Soo (angdoym@kribb.re.kr (Y.-M.J.))

Abstract AI-Helper 아이콘AI-Helper

The microbiota–gut–brain axis (MGBA) is a bidirectional signaling pathway mediating the interaction of the microbiota, the intestine, and the central nervous system. While the MGBA plays a pivotal role in normal development and physiology of the nervous and gastrointestinal system of t...

Keyword

참고문헌 (219)

  1. 1. Lynch S.V. Pedersen O. The Human Intestinal Microbiome in Health and Disease N. Engl. J. Med. 2016 375 2369 2379 10.1056/NEJMra1600266 27974040 

  2. 2. Hoban A.E. Stilling R.M. Ryan F.J. Shanahan F. Dinan T.G. Claesson M.J. Clarke G. Cryan J.F. Regulation of prefrontal cortex myelination by the microbiota Transl. Psychiatry 2016 6 10.1038/tp.2016.42 27045844 

  3. 3. Erny D. Hrabe de Angelis A.L. Jaitin D. Wieghofer P. Staszewski O. David E. Keren-Shaul H. Mahlakoiv T. Jakobshagen K. Buch T. Host microbiota constantly control maturation and function of microglia in the CNS Nat. Neurosci. 2015 18 965 977 10.1038/nn.4030 26030851 

  4. 4. Sampson T.R. Mazmanian S.K. Control of brain development, function, and behavior by the microbiome Cell Host Microbe 2015 17 565 576 10.1016/j.chom.2015.04.011 25974299 

  5. 5. Morais L.H. Schreiber H.L.t. Mazmanian S.K. The gut microbiota-brain axis in behaviour and brain disorders Nat. Rev. Microbiol. 2020 10.1038/s41579-020-00460-0 

  6. 6. Sudo N. Chida Y. Aiba Y. Sonoda J. Oyama N. Yu X.N. Kubo C. Koga Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice J. Physiol. 2004 558 263 275 10.1113/jphysiol.2004.063388 15133062 

  7. 7. Diaz Heijtz R. Wang S. Anuar F. Qian Y. Bjorkholm B. Samuelsson A. Hibberd M.L. Forssberg H. Pettersson S. Normal gut microbiota modulates brain development and behavior Proc. Natl. Acad. Sci. USA 2011 108 3047 3052 10.1073/pnas.1010529108 21282636 

  8. 8. Turner J.R. Intestinal mucosal barrier function in health and disease Nat. Rev. Immunol. 2009 9 799 809 10.1038/nri2653 19855405 

  9. 9. Odenwald M.A. Turner J.R. The intestinal epithelial barrier: A therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 2017 14 9 21 10.1038/nrgastro.2016.169 27848962 

  10. 10. Varatharaj A. Galea I. The blood-brain barrier in systemic inflammation Brain Behav. Immun. 2017 60 1 12 10.1016/j.bbi.2016.03.010 26995317 

  11. 11. Hayes C.L. Dong J. Galipeau H.J. Jury J. McCarville J. Huang X. Wang X.Y. Naidoo A. Anbazhagan A.N. Libertucci J. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis Sci. Rep. 2018 8 14184 10.1038/s41598-018-32366-6 30242285 

  12. 12. Jakobsson H.E. Rodriguez-Pineiro A.M. Schutte A. Ermund A. Boysen P. Bemark M. Sommer F. Backhed F. Hansson G.C. Johansson M.E. The composition of the gut microbiota shapes the colon mucus barrier EMBO Rep. 2015 16 164 177 10.15252/embr.201439263 25525071 

  13. 13. Bischoff S.C. Barbara G. Buurman W. Ockhuizen T. Schulzke J.D. Serino M. Tilg H. Watson A. Wells J.M. Intestinal permeability--a new target for disease prevention and therapy BMC Gastroenterol. 2014 14 189 10.1186/s12876-014-0189-7 25407511 

  14. 14. Kelly J.R. Kennedy P.J. Cryan J.F. Dinan T.G. Clarke G. Hyland N.P. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders Front. Cell. Neurosci. 2015 9 392 10.3389/fncel.2015.00392 26528128 

  15. 15. Braniste V. Al-Asmakh M. Kowal C. Anuar F. Abbaspour A. Toth M. Korecka A. Bakocevic N. Ng L.G. Kundu P. The gut microbiota influences blood-brain barrier permeability in mice Sci. Transl. Med. 2014 6 10.1126/scitranslmed.3009759 

  16. 16. Ploger S. Stumpff F. Penner G.B. Schulzke J.D. Gabel G. Martens H. Shen Z. Gunzel D. Aschenbach J.R. Microbial butyrate and its role for barrier function in the gastrointestinal tract Ann. N. Y. Acad. Sci. 2012 1258 52 59 10.1111/j.1749-6632.2012.06553.x 22731715 

  17. 17. Bravo J.A. Forsythe P. Chew M.V. Escaravage E. Savignac H.M. Dinan T.G. Bienenstock J. Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve Proc. Natl. Acad. Sci. USA 2011 108 16050 16055 10.1073/pnas.1102999108 21876150 

  18. 18. Kaelberer M.M. Buchanan K.L. Klein M.E. Barth B.B. Montoya M.M. Shen X. Bohorquez D.V. A gut-brain neural circuit for nutrient sensory transduction Science 2018 361 10.1126/science.aat5236 

  19. 19. Fani Maleki A. Rivest S. Innate Immune Cells: Monocytes, Monocyte-Derived Macrophages and Microglia as Therapeutic Targets for Alzheimer’s Disease and Multiple Sclerosis Front. Cell Neurosci. 2019 13 355 10.3389/fncel.2019.00355 31427930 

  20. 20. Malm T. Koistinaho M. Muona A. Magga J. Koistinaho J. The role and therapeutic potential of monocytic cells in Alzheimer’s disease Glia 2010 58 889 900 10.1002/glia.20973 20155817 

  21. 21. Theriault P. ElAli A. Rivest S. The dynamics of monocytes and microglia in Alzheimer’s disease Alzheimers Res. Ther. 2015 7 41 10.1186/s13195-015-0125-2 25878730 

  22. 22. Michaud J.P. Bellavance M.A. Prefontaine P. Rivest S. Real-time in vivo imaging reveals the ability of monocytes to clear vascular amyloid beta Cell Rep. 2013 5 646 653 10.1016/j.celrep.2013.10.010 24210819 

  23. 23. Baik S.H. Cha M.Y. Hyun Y.M. Cho H. Hamza B. Kim D.K. Han S.H. Choi H. Kim K.H. Moon M. Migration of neutrophils targeting amyloid plaques in Alzheimer’s disease mouse model Neurobiol. Aging 2014 35 1286 1292 10.1016/j.neurobiolaging.2014.01.003 24485508 

  24. 24. Zenaro E. Pietronigro E. Della Bianca V. Piacentino G. Marongiu L. Budui S. Turano E. Rossi B. Angiari S. Dusi S. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin Nat. Med. 2015 21 880 886 10.1038/nm.3913 26214837 

  25. 25. Togo T. Akiyama H. Iseki E. Kondo H. Ikeda K. Kato M. Oda T. Tsuchiya K. Kosaka K. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases J. Neuroimmunol. 2002 124 83 92 10.1016/S0165-5728(01)00496-9 11958825 

  26. 26. Gate D. Saligrama N. Leventhal O. Yang A.C. Unger M.S. Middeldorp J. Chen K. Lehallier B. Channappa D. De Los Santos M.B. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease Nature 2020 577 399 404 10.1038/s41586-019-1895-7 31915375 

  27. 27. Paouri E. Georgopoulos S. Systemic and CNS Inflammation Crosstalk: Implications for Alzheimer’s Disease Curr. Alzheimer Res. 2019 16 559 574 10.2174/1567205016666190321154618 30907316 

  28. 28. Peng L. Li Z.R. Green R.S. Holzman I.R. Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers J. Nutr. 2009 139 1619 1625 10.3945/jn.109.104638 19625695 

  29. 29. Lobionda S. Sittipo P. Kwon H.Y. Lee Y.K. The Role of Gut Microbiota in Intestinal Inflammation with Respect to Diet and Extrinsic Stressors Microorganisms 2019 7 271 10.3390/microorganisms7080271 31430948 

  30. 30. Wang X. Sun G. Feng T. Zhang J. Huang X. Wang T. Xie Z. Chu X. Yang J. Wang H. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression Cell Res. 2019 29 787 803 10.1038/s41422-019-0216-x 31488882 

  31. 31. Wu S.C. Cao Z.S. Chang K.M. Juang J.L. Intestinal microbial dysbiosis aggravates the progression of Alzheimer’s disease in Drosophila Nat. Commun. 2017 8 24 10.1038/s41467-017-00040-6 28634323 

  32. 32. Sharon G. Garg N. Debelius J. Knight R. Dorrestein P.C. Mazmanian S.K. Specialized metabolites from the microbiome in health and disease Cell Metab. 2014 20 719 730 10.1016/j.cmet.2014.10.016 25440054 

  33. 33. Dalile B. Van Oudenhove L. Vervliet B. Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication Nat. Rev. Gastroenterol. Hepatol. 2019 1 461 478 10.1038/s41575-019-0157-3 

  34. 34. Silva Y.P. Bernardi A. Frozza R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication Front. Endocrinol. 2020 11 25 10.3389/fendo.2020.00025 

  35. 35. Elamin E.E. Masclee A.A. Dekker J. Pieters H.J. Jonkers D.M. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers J. Nutr. 2013 143 1872 1881 10.3945/jn.113.179549 24132573 

  36. 36. Lewis K. Lutgendorff F. Phan V. Soderholm J.D. Sherman P.M. McKay D.M. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate Inflamm. Bowel Dis. 2010 16 1138 1148 10.1002/ibd.21177 20024905 

  37. 37. Zhou L. Zhang M. Wang Y. Dorfman R.G. Liu H. Yu T. Chen X. Tang D. Xu L. Yin Y. Faecalibacterium prausnitzii Produces Butyrate to Maintain Th17/Treg Balance and to Ameliorate Colorectal Colitis by Inhibiting Histone Deacetylase 1 Inflamm. Bowel Dis. 2018 24 1926 1940 10.1093/ibd/izy182 29796620 

  38. 38. Furusawa Y. Obata Y. Fukuda S. Endo T.A. Nakato G. Takahashi D. Nakanishi Y. Uetake C. Kato K. Kato T. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells Nature 2013 504 446 450 10.1038/nature12721 24226770 

  39. 39. Arpaia N. Campbell C. Fan X. Dikiy S. van der Veeken J. deRoos P. Liu H. Cross J.R. Pfeffer K. Coffer P.J. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation Nature 2013 504 451 455 10.1038/nature12726 24226773 

  40. 40. Covasa M. Stephens R.W. Toderean R. Cobuz C. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides Front. Endocrinol. 2019 10 82 10.3389/fendo.2019.00082 30837951 

  41. 41. Katsurada K. Yada T. Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist J. Diabetes Investig. 2016 7 64 69 10.1111/jdi.12464 

  42. 42. Kim S.W. Hooker J.M. Otto N. Win K. Muench L. Shea C. Carter P. King P. Reid A.E. Volkow N.D. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET Nucl. Med. Biol. 2013 40 912 918 10.1016/j.nucmedbio.2013.06.007 23906667 

  43. 43. Vijay N. Morris M.E. Role of monocarboxylate transporters in drug delivery to the brain Curr. Pharm. Des. 2014 20 1487 1498 10.2174/13816128113199990462 23789956 

  44. 44. Park J. Wang Q. Wu Q. Mao-Draayer Y. Kim C.H. Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation Sci. Rep. 2019 9 8831 10.1038/s41598-019-45311-y 31222040 

  45. 45. Kennedy P.J. Cryan J.F. Dinan T.G. Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis Neuropharmacology 2017 112 399 412 10.1016/j.neuropharm.2016.07.002 27392632 

  46. 46. Gershon M.D. Tack J. The serotonin signaling system: From basic understanding to drug development for functional GI disorders Gastroenterology 2007 132 397 414 10.1053/j.gastro.2006.11.002 17241888 

  47. 47. Sikander A. Rana S.V. Prasad K.K. Role of serotonin in gastrointestinal motility and irritable bowel syndrome Clin. Chim. Acta 2009 403 47 55 10.1016/j.cca.2009.01.028 19361459 

  48. 48. Shajib M.S. Baranov A. Khan W.I. Diverse Effects of Gut-Derived Serotonin in Intestinal Inflammation ACS Chem. Neurosci. 2017 8 920 931 10.1021/acschemneuro.6b00414 28288510 

  49. 49. Wikoff W.R. Anfora A.T. Liu J. Schultz P.G. Lesley S.A. Peters E.C. Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites Proc. Natl. Acad. Sci. USA 2009 106 3698 3703 10.1073/pnas.0812874106 19234110 

  50. 50. Yano J.M. Yu K. Donaldson G.P. Shastri G.G. Ann P. Ma L. Nagler C.R. Ismagilov R.F. Mazmanian S.K. Hsiao E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis Cell 2015 161 264 276 10.1016/j.cell.2015.02.047 25860609 

  51. 51. Reigstad C.S. Salmonson C.E. Rainey J.F. 3rd Szurszewski J.H. Linden D.R. Sonnenburg J.L. Farrugia G. Kashyap P.C. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells FASEB J. 2015 29 1395 1403 10.1096/fj.14-259598 25550456 

  52. 52. Keszthelyi D. Troost F.J. Jonkers D.M. van Eijk H.M. Lindsey P.J. Dekker J. Buurman W.A. Masclee A.A. Serotonergic reinforcement of intestinal barrier function is impaired in irritable bowel syndrome Aliment. Pharmacol. Ther. 2014 40 392 402 10.1111/apt.12842 24943480 

  53. 53. Roager H.M. Licht T.R. Microbial tryptophan catabolites in health and disease Nat. Commun. 2018 9 10.1038/s41467-018-05470-4 

  54. 54. Hoglund E. Overli O. Winberg S. Tryptophan Metabolic Pathways and Brain Serotonergic Activity: A Comparative Review Front. Endocrinol. 2019 10 158 10.3389/fendo.2019.00158 31024440 

  55. 55. Clarke G. Grenham S. Scully P. Fitzgerald P. Moloney R.D. Shanahan F. Dinan T.G. Cryan J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner Mol. Psychiatry 2013 18 666 673 10.1038/mp.2012.77 22688187 

  56. 56. O’Mahony S.M. Clarke G. Borre Y.E. Dinan T.G. Cryan J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis Behav. Brain Res. 2015 277 32 48 10.1016/j.bbr.2014.07.027 25078296 

  57. 57. Kaszaki J. Erces D. Varga G. Szabo A. Vecsei L. Boros M. Kynurenines and intestinal neurotransmission: The role of N-methyl-D-aspartate receptors J. Neural Transm. 2012 119 211 223 10.1007/s00702-011-0658-x 21617892 

  58. 58. Lillesaar C. The serotonergic system in fish J. Chem. Neuroanat 2011 41 294 308 10.1016/j.jchemneu.2011.05.009 21635948 

  59. 59. Liu S. Gao J. Zhu M. Liu K. Zhang H.L. Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment Mol. Neurobiol. 2020 57 5026 5043 10.1007/s12035-020-02073-3 32829453 

  60. 60. Casanova M.F. Frye R.E. Gillberg C. Casanova E.L. Editorial: Comorbidity and Autism Spectrum Disorder Front. Psychiatry 2020 11 10.3389/fpsyt.2020.617395 

  61. 61. De Rubeis S. He X. Goldberg A.P. Poultney C.S. Samocha K. Cicek A.E. Kou Y. Liu L. Fromer M. Walker S. Synaptic, transcriptional and chromatin genes disrupted in autism Nature 2014 515 209 215 10.1038/nature13772 25363760 

  62. 62. Yuen R.K. Merico D. Bookman M. Howe J.L. Thiruvahindrapuram B. Patel R.V. Whitney J. Deflaux N. Bingham J. Wang Z. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder Nat. Neurosci. 2017 20 602 611 10.1038/nn.4524 28263302 

  63. 63. Grove J. Ripke S. Als T.D. Mattheisen M. Walters R.K. Won H. Pallesen J. Agerbo E. Andreassen O.A. Anney R. Identification of common genetic risk variants for autism spectrum disorder Nat. Genet. 2019 51 431 444 10.1038/s41588-019-0344-8 30804558 

  64. 64. Meltzer A. Van de Water J. The Role of the Immune System in Autism Spectrum Disorder Neuropsychopharmacology 2017 42 284 298 10.1038/npp.2016.158 27534269 

  65. 65. Hsiao E.Y. McBride S.W. Hsien S. Sharon G. Hyde E.R. McCue T. Codelli J.A. Chow J. Reisman S.E. Petrosino J.F. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders Cell 2013 155 1451 1463 10.1016/j.cell.2013.11.024 24315484 

  66. 66. Yenkoyan K. Grigoryan A. Fereshetyan K. Yepremyan D. Advances in understanding the pathophysiology of autism spectrum disorders Behav. Brain Res. 2017 331 92 101 10.1016/j.bbr.2017.04.038 28499914 

  67. 67. Hashem S. Nisar S. Bhat A.A. Yadav S.K. Azeem M.W. Bagga P. Fakhro K. Reddy R. Frenneaux M.P. Haris M. Genetics of structural and functional brain changes in autism spectrum disorder Transl. Psychiatry 2020 10 229 10.1038/s41398-020-00921-3 32661244 

  68. 68. Gladysz D. Krzywdzinska A. Hozyasz K.K. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment? Mol. Neurobiol. 2018 55 6387 6435 10.1007/s12035-017-0822-x 29307081 

  69. 69. Siniscalco D. Schultz S. Brigida A.L. Antonucci N. Inflammation and Neuro-Immune Dysregulations in Autism Spectrum Disorders Pharmaceuticals 2018 11 56 10.3390/ph11020056 29867038 

  70. 70. Mayer E.A. Padua D. Tillisch K. Altered brain-gut axis in autism: Comorbidity or causative mechanisms? Bioessays 2014 36 933 939 10.1002/bies.201400075 25145752 

  71. 71. Samsam M. Ahangari R. Naser S.A. Pathophysiology of autism spectrum disorders: Revisiting gastrointestinal involvement and immune imbalance World J. Gastroenterol. 2014 20 9942 9951 10.3748/wjg.v20.i29.9942 25110424 

  72. 72. Vuong H.E. Hsiao E.Y. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder Biol. Psychiatry 2017 81 411 423 10.1016/j.biopsych.2016.08.024 27773355 

  73. 73. Desbonnet L. Clarke G. Shanahan F. Dinan T.G. Cryan J.F. Microbiota is essential for social development in the mouse Mol. Psychiatry 2014 19 146 148 10.1038/mp.2013.65 23689536 

  74. 74. Buffington S.A. Di Prisco G.V. Auchtung T.A. Ajami N.J. Petrosino J.F. Costa-Mattioli M. Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring Cell 2016 165 1762 1775 10.1016/j.cell.2016.06.001 27315483 

  75. 75. Fattorusso A. Di Genova L. Dell’Isola G.B. Mencaroni E. Esposito S. Autism Spectrum Disorders and the Gut Microbiota Nutrients 2019 11 521 10.3390/nu11030521 

  76. 76. Xu M. Xu X. Li J. Li F. Association Between Gut Microbiota and Autism Spectrum Disorder: A Systematic Review and Meta-Analysis Front. Psychiatry 2019 10 473 10.3389/fpsyt.2019.00473 31404299 

  77. 77. Bolte E.R. Autism and Clostridium tetani Med. Hypotheses 1998 51 133 144 10.1016/S0306-9877(98)90107-4 9881820 

  78. 78. Sharon G. Cruz N.J. Kang D.-W. Gandal M.J. Wang B. Kim Y.-M. Zink E.M. Casey C.P. Taylor B.C. Lane C.J. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice Cell 2019 177 1600 1618 10.1016/j.cell.2019.05.004 31150625 

  79. 79. Sandler R.H. Finegold S.M. Bolte E.R. Buchanan C.P. Maxwell A.P. Vaisanen M.L. Nelson M.N. Wexler H.M. Short-term benefit from oral vancomycin treatment of regressive-onset autism J. Child. Neurol. 2000 15 429 435 10.1177/088307380001500701 10921511 

  80. 80. Li Q. Han Y. Dy A.B.C. Hagerman R.J. The Gut Microbiota and Autism Spectrum Disorders Front. Cell Neurosci. 2017 11 120 10.3389/fncel.2017.00120 28503135 

  81. 81. Rohr M.W. Narasimhulu C.A. Rudeski-Rohr T.A. Parthasarathy S. Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review Adv. Nutr. 2020 11 77 91 10.1093/advances/nmz061 31268137 

  82. 82. Israelyan N. Margolis K.G. Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders Pharmacol. Res. 2018 132 1 6 10.1016/j.phrs.2018.03.020 29614380 

  83. 83. Suzuki T. Yoshinaga N. Tanabe S. Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium J. Biol. Chem. 2011 286 31263 31271 10.1074/jbc.M111.238147 21771795 

  84. 84. De Angelis M. Piccolo M. Vannini L. Siragusa S. De Giacomo A. Serrazzanetti D.I. Cristofori F. Guerzoni M.E. Gobbetti M. Francavilla R. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified PLoS ONE 2013 8 e76993 10.1371/journal.pone.0076993 24130822 

  85. 85. Fiorentino M. Sapone A. Senger S. Camhi S.S. Kadzielski S.M. Buie T.M. Kelly D.L. Cascella N. Fasano A. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders Mol. Autism. 2016 7 49 10.1186/s13229-016-0110-z 27957319 

  86. 86. Matta S.M. Hill-Yardin E.L. Crack P.J. The influence of neuroinflammation in Autism Spectrum Disorder Brain Behav. Immun. 2019 79 75 90 10.1016/j.bbi.2019.04.037 31029798 

  87. 87. Saurman V. Margolis K.G. Luna R.A. Autism Spectrum Disorder as a Brain-Gut-Microbiome Axis Disorder Dig. Dis. Sci. 2020 65 818 828 10.1007/s10620-020-06133-5 32056091 

  88. 88. Sgritta M. Dooling S.W. Buffington S.A. Momin E.N. Francis M.B. Britton R.A. Costa-Mattioli M. Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder Neuron 2019 101 246 259.e6 10.1016/j.neuron.2018.11.018 30522820 

  89. 89. Napoli E. Duenas N. Giulivi C. Potential therapeutic use of the ketogenic diet in autism spectrum disorders Front. Pediatrics 2014 2 69 10.3389/fped.2014.00069 

  90. 90. Newell C. Bomhof M.R. Reimer R.A. Hittel D.S. Rho J.M. Shearer J. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder Mol. Autism. 2016 7 37 10.1186/s13229-016-0099-3 27594980 

  91. 91. Ristori M.V. Quagliariello A. Reddel S. Ianiro G. Vicari S. Gasbarrini A. Putignani L. Autism, Gastrointestinal Symptoms and Modulation of Gut Microbiota by Nutritional Interventions Nutrients 2019 11 2812 10.3390/nu11112812 

  92. 92. Kang D.W. Adams J.B. Gregory A.C. Borody T. Chittick L. Fasano A. Khoruts A. Geis E. Maldonado J. McDonough-Means S. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study Microbiome 2017 5 10 10.1186/s40168-016-0225-7 28122648 

  93. 93. Selkoe D.J. Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years EMBO Mol. Med. 2016 8 595 608 10.15252/emmm.201606210 27025652 

  94. 94. Long J.M. Holtzman D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies Cell 2019 179 312 339 10.1016/j.cell.2019.09.001 31564456 

  95. 95. Hou Y. Dan X. Babbar M. Wei Y. Hasselbalch S.G. Croteau D.L. Bohr V.A. Ageing as a risk factor for neurodegenerative disease Nat. Rev. Neurol. 2019 15 565 581 10.1038/s41582-019-0244-7 31501588 

  96. 96. Hu N. Yu J.T. Tan L. Wang Y.L. Sun L. Tan L. Nutrition and the risk of Alzheimer’s disease Biomed. Res. Int. 2013 2013 10.1155/2013/524820 23865055 

  97. 97. Razay G. Vreugdenhil A. Wilcock G. The metabolic syndrome and Alzheimer disease Arch. Neurol. 2007 64 93 96 10.1001/archneur.64.1.93 17210814 

  98. 98. Neuner S.M. Tcw J. Goate A.M. Genetic architecture of Alzheimer’s disease Neurobiol. Dis. 2020 143 10.1016/j.nbd.2020.104976 

  99. 99. DeJong E.N. Surette M.G. Bowdish D.M.E. The Gut Microbiota and Unhealthy Aging: Disentangling Cause from Consequence Cell Host Microbe 2020 28 180 189 10.1016/j.chom.2020.07.013 32791111 

  100. 100. Dabke K. Hendrick G. Devkota S. The gut microbiome and metabolic syndrome J. Clin. Investig. 2019 129 4050 4057 10.1172/JCI129194 31573550 

  101. 101. Zhang M. Zhao D. Zhou G. Li C. Dietary Pattern, Gut Microbiota, and Alzheimer’s Disease J. Agric. Food Chem. 2020 68 12800 12809 10.1021/acs.jafc.9b08309 32090565 

  102. 102. Gale S.C. Gao L. Mikacenic C. Coyle S.M. Rafaels N. Murray Dudenkov T. Madenspacher J.H. Draper D.W. Ge W. Aloor J.J. APOepsilon4 is associated with enhanced in vivo innate immune responses in human subjects J. Allergy Clin. Immunol. 2014 134 127 134 10.1016/j.jaci.2014.01.032 24655576 

  103. 103. Tran T.T.T. Corsini S. Kellingray L. Hegarty C. Le Gall G. Narbad A. Muller M. Tejera N. O’Toole P.W. Minihane A.M. APOE genotype influences the gut microbiome structure and function in humans and mice: Relevance for Alzheimer’s disease pathophysiology FASEB J. 2019 33 8221 8231 10.1096/fj.201900071R 30958695 

  104. 104. Correale C. Genua M. Vetrano S. Mazzini E. Martinoli C. Spinelli A. Arena V. Peyrin-Biroulet L. Caprioli F. Passini N. Bacterial sensor triggering receptor expressed on myeloid cells-2 regulates the mucosal inflammatory response Gastroenterology 2013 144 346 356 10.1053/j.gastro.2012.10.040 23108068 

  105. 105. Fernandes S. Iyer S. Kerr W.G. Role of SHIP1 in cancer and mucosal inflammation Ann. N. Y. Acad. Sci. 2013 1280 6 10 10.1111/nyas.12038 23551094 

  106. 106. Lubbers J. Rodriguez E. van Kooyk Y. Modulation of Immune Tolerance via Siglec-Sialic Acid Interactions Front. Immunol. 2018 9 2807 10.3389/fimmu.2018.02807 30581432 

  107. 107. Cattaneo A. Cattane N. Galluzzi S. Provasi S. Lopizzo N. Festari C. Ferrari C. Guerra U.P. Paghera B. Muscio C. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly Neurobiol. Aging 2017 49 60 68 10.1016/j.neurobiolaging.2016.08.019 27776263 

  108. 108. Kowalski K. Mulak A. Brain-Gut-Microbiota Axis in Alzheimer’s Disease J. Neurogastroenterol. Motil. 2019 25 48 60 10.5056/jnm18087 30646475 

  109. 109. Seo D.O. Holtzman D.M. Gut Microbiota: From the Forgotten Organ to a Potential Key Player in the Pathology of Alzheimer’s Disease J. Gerontol. A Biol. Sci. Med. Sci. 2020 75 1232 1241 10.1093/gerona/glz262 31738402 

  110. 110. Minter M.R. Zhang C. Leone V. Ringus D.L. Zhang X. Oyler-Castrillo P. Musch M.W. Liao F. Ward J.F. Holtzman D.M. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease Sci. Rep. 2016 6 30028 10.1038/srep30028 27443609 

  111. 111. Harach T. Marungruang N. Duthilleul N. Cheatham V. Mc Coy K. Frisoni G. Neher J. Fåk F. Jucker M. Lasser T. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota Sci. Rep. 2017 7 10.1038/srep41802 28176819 

  112. 112. Krstic D. Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease Nat. Rev. Neurol. 2013 9 25 34 10.1038/nrneurol.2012.236 23183882 

  113. 113. Bowman G.L. Kaye J.A. Moore M. Waichunas D. Carlson N.E. Quinn J.F. Blood-brain barrier impairment in Alzheimer disease: Stability and functional significance Neurology 2007 68 1809 1814 10.1212/01.wnl.0000262031.18018.1a 17515542 

  114. 114. Montagne A. Barnes S.R. Sweeney M.D. Halliday M.R. Sagare A.P. Zhao Z. Toga A.W. Jacobs R.E. Liu C.Y. Amezcua L. Blood-brain barrier breakdown in the aging human hippocampus Neuron 2015 85 296 302 10.1016/j.neuron.2014.12.032 25611508 

  115. 115. Nation D.A. Sweeney M.D. Montagne A. Sagare A.P. D’Orazio L.M. Pachicano M. Sepehrband F. Nelson A.R. Buennagel D.P. Harrington M.G. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction Nat. Med. 2019 25 270 276 10.1038/s41591-018-0297-y 30643288 

  116. 116. Zhao Y. Cong L. Jaber V. Lukiw W.J. Microbiome-Derived Lipopolysaccharide Enriched in the Perinuclear Region of Alzheimer’s Disease Brain Front. Immunol. 2017 8 1064 10.3389/fimmu.2017.01064 28928740 

  117. 117. Dominy S.S. Lynch C. Ermini F. Benedyk M. Marczyk A. Konradi A. Nguyen M. Haditsch U. Raha D. Griffin C. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors Sci. Adv. 2019 5 10.1126/sciadv.aau3333 30746447 

  118. 118. Sheng J.G. Bora S.H. Xu G. Borchelt D.R. Price D.L. Koliatsos V.E. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice Neurobiol. Dis. 2003 14 133 145 10.1016/S0969-9961(03)00069-X 13678674 

  119. 119. Bulgart H.R. Neczypor E.W. Wold L.E. Mackos A.R. Microbial involvement in Alzheimer disease development and progression Mol. Neurodegener. 2020 15 42 10.1186/s13024-020-00378-4 32709243 

  120. 120. Brown G.C. The endotoxin hypothesis of neurodegeneration J. Neuroinflammation 2019 16 180 10.1186/s12974-019-1564-7 31519175 

  121. 121. Friedland R.P. Chapman M.R. The role of microbial amyloid in neurodegeneration PLoS Pathog. 2017 13 10.1371/journal.ppat.1006654 29267402 

  122. 122. Sampson T.R. Challis C. Jain N. Moiseyenko A. Ladinsky M.S. Shastri G.G. Thron T. Needham B.D. Horvath I. Debelius J.W. A gut bacterial amyloid promotes alpha-synuclein aggregation and motor impairment in mice Elife 2020 9 10.7554/eLife.53111 

  123. 123. Santoriello C. Zon L.I. Hooked! Modeling human disease in zebrafish J. Clin. Investig. 2012 122 2337 2343 10.1172/JCI60434 22751109 

  124. 124. Flores E.M. Nguyen A.T. Odem M.A. Eisenhoffer G.T. Krachler A.M. The zebrafish as a model for gastrointestinal tract-microbe interactions Cell Microbiol. 2020 22 10.1111/cmi.13152 

  125. 125. Fontana B.D. Mezzomo N.J. Kalueff A.V. Rosemberg D.B. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review Exp. Neurol. 2018 299 157 171 10.1016/j.expneurol.2017.10.004 28987462 

  126. 126. Sakai C. Ijaz S. Hoffman E.J. Zebrafish Models of Neurodevelopmental Disorders: Past, Present, and Future Front. Mol. Neurosci. 2018 11 294 10.3389/fnmol.2018.00294 30210288 

  127. 127. Pham L.N. Kanther M. Semova I. Rawls J.F. Methods for generating and colonizing gnotobiotic zebrafish Nat. Protoc. 2008 3 1862 10.1038/nprot.2008.186 19008873 

  128. 128. Melancon E. Gomez De La Torre Canny S. Sichel S. Kelly M. Wiles T.J. Rawls J.F. Eisen J.S. Guillemin K. Best practices for germ-free derivation and gnotobiotic zebrafish husbandry Methods Cell Biol. 2017 138 61 100 10.1016/bs.mcb.2016.11.005 28129860 

  129. 129. Stephens W.Z. Burns A.R. Stagaman K. Wong S. Rawls J.F. Guillemin K. Bohannan B.J. The composition of the zebrafish intestinal microbial community varies across development ISME J. 2016 10 644 654 10.1038/ismej.2015.140 26339860 

  130. 130. Gaulke C.A. Beaver L.M. Armour C.R. Humphreys I.R. Barton C.L. Tanguay R.L. Ho E. Sharpton T.J. An integrated gene catalog of the zebrafish gut microbiome reveals significant homology with mammalian microbiomes BioRxiv 2020 10.1101/2020.06.15.153924 

  131. 131. Orger M.B. de Polavieja G.G. Zebrafish Behavior: Opportunities and Challenges Annu. Rev. Neurosci. 2017 40 125 147 10.1146/annurev-neuro-071714-033857 28375767 

  132. 132. Basnet R.M. Zizioli D. Taweedet S. Finazzi D. Memo M. Zebrafish larvae as a behavioral model in neuropharmacology Biomedicines 2019 7 23 10.3390/biomedicines7010023 30917585 

  133. 133. Kalueff A.V. Gebhardt M. Stewart A.M. Cachat J.M. Brimmer M. Chawla J.S. Craddock C. Kyzar E.J. Roth A. Landsman S. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond Zebrafish 2013 10 70 86 10.1089/zeb.2012.0861 23590400 

  134. 134. Vaz R. Hofmeister W. Lindstrand A. Zebrafish models of neurodevelopmental disorders: Limitations and benefits of current tools and techniques Int. J. Mol. Sci. 2019 20 1296 10.3390/ijms20061296 

  135. 135. Wallace K.N. Akhter S. Smith E.M. Lorent K. Pack M. Intestinal growth and differentiation in zebrafish Mech. Dev. 2005 122 157 173 10.1016/j.mod.2004.10.009 15652704 

  136. 136. Wang Z. Du J. Lam S.H. Mathavan S. Matsudaira P. Gong Z. Morphological and molecular evidence for functional organization along the rostrocaudal axis of the adult zebrafish intestine BMC Genom. 2010 11 392 10.1186/1471-2164-11-392 20565988 

  137. 137. Brugman S. The zebrafish as a model to study intestinal inflammation Dev. Comp. Immunol. 2016 64 82 92 10.1016/j.dci.2016.02.020 26902932 

  138. 138. Wallace K.N. Pack M. Unique and conserved aspects of gut development in zebrafish Dev. Biol. 2003 255 12 29 10.1016/S0012-1606(02)00034-9 12618131 

  139. 139. Moran-Ramos S. Tovar A.R. Torres N. Diet: Friend or foe of enteroendocrine cells--how it interacts with enteroendocrine cells Adv. Nutr. 2012 3 8 20 10.3945/an.111.000976 22332097 

  140. 140. Ye L. Mueller O. Bagwell J. Bagnat M. Liddle R.A. Rawls J.F. High fat diet induces microbiota-dependent silencing of enteroendocrine cells Elife 2019 8 10.7554/eLife.48479 

  141. 141. Ye L. Bae M. Cassilly C.D. Jabba S.V. Thorpe D.W. Martin A.M. Lu H.Y. Wang J. Thompson J.D. Lickwar C.R. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways Cell Host Microbe 2020 10.1016/j.chom.2020.11.011 

  142. 142. Olsson C. Holmberg A. Holmgren S. Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut J. Comp. Neurol. 2008 508 756 770 10.1002/cne.21705 18393294 

  143. 143. Kulkarni S. Ganz J. Bayrer J. Becker L. Bogunovic M. Rao M. Advances in Enteric Neurobiology: The “Brain” in the Gut in Health and Disease J. Neurosci. 2018 38 9346 9354 10.1523/JNEUROSCI.1663-18.2018 30381426 

  144. 144. Shepherd I. Eisen J. Development of the zebrafish enteric nervous system Methods Cell Biol. 2011 101 143 160 10.1016/B978-0-12-387036-0.00006-2 21550442 

  145. 145. Ganz J. Gut feelings: Studying enteric nervous system development, function, and disease in the zebrafish model system Dev. Dyn. 2018 247 268 278 10.1002/dvdy.24597 28975691 

  146. 146. Trede N.S. Langenau D.M. Traver D. Look A.T. Zon L. The use of zebrafish to understand immunity Immunity 2004 20 367 379 10.1016/S1074-7613(04)00084-6 15084267 

  147. 147. Oosterhof N. Boddeke E. van Ham T.J. Immune cell dynamics in the CNS: Learning from the zebrafish Glia 2015 63 719 735 10.1002/glia.22780 25557007 

  148. 148. Nasevicius A. Ekker S.C. Effective targeted gene ‘knockdown’ in zebrafish Nat. Genet. 2000 26 216 220 10.1038/79951 11017081 

  149. 149. Robu M.E. Larson J.D. Nasevicius A. Beiraghi S. Brenner C. Farber S.A. Ekker S.C. p53 activation by knockdown technologies PLoS Genet. 2007 3 e78 10.1371/journal.pgen.0030078 17530925 

  150. 150. Stainier D.Y.R. Raz E. Lawson N.D. Ekker S.C. Burdine R.D. Eisen J.S. Ingham P.W. Schulte-Merker S. Yelon D. Weinstein B.M. Guidelines for morpholino use in zebrafish PLoS Genet. 2017 13 e1007000 10.1371/journal.pgen.1007000 29049395 

  151. 151. Nüsslein-Volhard C. The zebrafish issue of development Development 2012 139 4099 4103 10.1242/dev.085217 23093421 

  152. 152. Sertori R. Trengove M. Basheer F. Ward A.C. Liongue C. Genome editing in zebrafish: A practical overview Brief. Funct. Genom. 2016 15 322 330 10.1093/bfgp/elv051 26654901 

  153. 153. Hwang W.Y. Fu Y. Reyon D. Maeder M.L. Tsai S.Q. Sander J.D. Peterson R.T. Yeh J.R. Joung J.K. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol. 2013 31 227 229 10.1038/nbt.2501 23360964 

  154. 154. Liu K. Petree C. Requena T. Varshney P. Varshney G.K. Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease Front. Cell Dev. Biol. 2019 7 13 10.3389/fcell.2019.00013 30886848 

  155. 155. Wierson W.A. Welker J.M. Almeida M.P. Mann C.M. Webster D.A. Torrie M.E. Weiss T.J. Kambakam S. Vollbrecht M.K. Lan M. Efficient targeted integration directed by short homology in zebrafish and mammalian cells Elife 2020 9 10.7554/eLife.53968 

  156. 156. Cho H.-J. Lee J.-G. Kim J.-H. Kim S.-Y. Huh Y.H. Kim H.-J. Lee K.-S. Yu K. Lee J.-S. Vascular defects of DYRK1A knockouts are ameliorated by modulating calcium signaling in zebrafish Dis. Models Mech. 2019 12 10.1242/dmm.037044 31043432 

  157. 157. Kwan K.M. Fujimoto E. Grabher C. Mangum B.D. Hardy M.E. Campbell D.S. Parant J.M. Yost H.J. Kanki J.P. Chien C.B. The Tol2kit: A multisite gateway-based construction kit for Tol2 transposon transgenesis constructs Dev. Dyn. 2007 236 3088 3099 10.1002/dvdy.21343 17937395 

  158. 158. Scheer N. Campos-Ortega J.A. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish Mech. Dev. 1999 80 153 158 10.1016/S0925-4773(98)00209-3 10072782 

  159. 159. Goll M.G. Anderson R. Stainier D.Y. Spradling A.C. Halpern M.E. Transcriptional silencing and reactivation in transgenic zebrafish Genetics 2009 182 747 755 10.1534/genetics.109.102079 19433629 

  160. 160. Zhang Y. Ouyang J. Qie J. Zhang G. Liu L. Yang P. Optimization of the Gal4/UAS transgenic tools in zebrafish Appl. Microbiol. Biotechnol. 2019 103 1789 1799 10.1007/s00253-018-09591-0 30613898 

  161. 161. Boniface E.J. Lu J. Victoroff T. Zhu M. Chen W. FlEx-based transgenic reporter lines for visualization of Cre and Flp activity in live zebrafish Genesis 2009 47 484 491 10.1002/dvg.20526 19415631 

  162. 162. Subedi A. Macurak M. Gee S.T. Monge E. Goll M.G. Potter C.J. Parsons M.J. Halpern M.E. Adoption of the Q transcriptional regulatory system for zebrafish transgenesis Methods 2014 66 433 440 10.1016/j.ymeth.2013.06.012 23792917 

  163. 163. Carney T.J. Mosimann C. Switch and Trace: Recombinase Genetics in Zebrafish Trends Genet. 2018 34 362 378 10.1016/j.tig.2018.01.004 29429760 

  164. 164. Davison J.M. Akitake C.M. Goll M.G. Rhee J.M. Gosse N. Baier H. Halpern M.E. Leach S.D. Parsons M.J. Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish Dev. Biol. 2007 304 811 824 10.1016/j.ydbio.2007.01.033 17335798 

  165. 165. Sun F. Zeng J. Jing M. Zhou J. Feng J. Owen S.F. Luo Y. Li F. Wang H. Yamaguchi T. A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice Cell 2018 174 481 496.e419 10.1016/j.cell.2018.06.042 30007419 

  166. 166. Villani A. Benjaminsen J. Moritz C. Henke K. Hartmann J. Norlin N. Richter K. Schieber N.L. Franke T. Schwab Y. Clearance by Microglia Depends on Packaging of Phagosomes into a Unique Cellular Compartment Dev. Cell 2019 49 77 88.e7 10.1016/j.devcel.2019.02.014 30880002 

  167. 167. Wang Z. Lin L. Chen W. Zheng X. Zhang Y. Liu Q. Yang D. Neutrophil plays critical role during Edwardsiella piscicida immersion infection in zebrafish larvae Fish. Shellfish Immunol. 2019 87 565 572 10.1016/j.fsi.2019.02.008 30742890 

  168. 168. Rosowski E.E. Deng Q. Keller N.P. Huttenlocher A. Rac2 Functions in Both Neutrophils and Macrophages To Mediate Motility and Host Defense in Larval Zebrafish J. Immunol. 2016 197 4780 4790 10.4049/jimmunol.1600928 27837107 

  169. 169. Thakur P.C. Davison J.M. Stuckenholz C. Lu L. Bahary N. Dysregulated phosphatidylinositol signaling promotes endoplasmic-reticulum-stress-mediated intestinal mucosal injury and inflammation in zebrafish Dis. Model. Mech. 2014 7 93 106 10.1242/dmm.012864 24135483 

  170. 170. Walton E.M. Cronan M.R. Beerman R.W. Tobin D.M. The Macrophage-Specific Promoter mfap4 Allows Live, Long-Term Analysis of Macrophage Behavior during Mycobacterial Infection in Zebrafish PLoS ONE 2015 10 e138949 10.1371/journal.pone.0138949 26445458 

  171. 171. Dee C.T. Nagaraju R.T. Athanasiadis E.I. Gray C. Fernandez Del Ama L. Johnston S.A. Secombes C.J. Cvejic A. Hurlstone A.F. CD4-Transgenic Zebrafish Reveal Tissue-Resident Th2- and Regulatory T Cell-like Populations and Diverse Mononuclear Phagocytes J. Immunol. 2016 197 3520 3530 10.4049/jimmunol.1600959 27694495 

  172. 172. Rossi F. Casano A.M. Henke K. Richter K. Peri F. The SLC7A7 Transporter Identifies Microglial Precursors prior to Entry into the Brain Cell Rep. 2015 11 1008 1017 10.1016/j.celrep.2015.04.028 25959825 

  173. 173. Sanderson L.E. Chien A.T. Astin J.W. Crosier K.E. Crosier P.S. Hall C.J. An inducible transgene reports activation of macrophages in live zebrafish larvae Dev. Comp. Immunol. 2015 53 63 69 10.1016/j.dci.2015.06.013 26123890 

  174. 174. Peri F. Nusslein-Volhard C. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo Cell 2008 133 916 927 10.1016/j.cell.2008.04.037 18510934 

  175. 175. Sieger D. Moritz C. Ziegenhals T. Prykhozhij S. Peri F. Long-range Ca2+ waves transmit brain-damage signals to microglia Dev. Cell 2012 22 1138 1148 10.1016/j.devcel.2012.04.012 22632801 

  176. 176. Page D.M. Wittamer V. Bertrand J.Y. Lewis K.L. Pratt D.N. Delgado N. Schale S.E. McGue C. Jacobsen B.H. Doty A. An evolutionarily conserved program of B-cell development and activation in zebrafish Blood 2013 122 1 11 10.1182/blood-2012-12-471029 23828882 

  177. 177. Alvers A.L. Ryan S. Scherz P.J. Huisken J. Bagnat M. Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling Development 2014 141 1110 1119 10.1242/dev.100313 24504339 

  178. 178. Murdoch C.C. Espenschied S.T. Matty M.A. Mueller O. Tobin D.M. Rawls J.F. Intestinal Serum amyloid A suppresses systemic neutrophil activation and bactericidal activity in response to microbiota colonization PLoS Pathog. 2019 15 e1007381 10.1371/journal.ppat.1007381 30845179 

  179. 179. Troll J.V. Hamilton M.K. Abel M.L. Ganz J. Bates J.M. Stephens W.Z. Melancon E. van der Vaart M. Meijer A.H. Distel M. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling Development 2018 145 10.1242/dev.155317 

  180. 180. Hall C. Flores M.V. Chien A. Davidson A. Crosier K. Crosier P. Transgenic zebrafish reporter lines reveal conserved Toll-like receptor signaling potential in embryonic myeloid leukocytes and adult immune cell lineages J. Leukoc Biol. 2009 85 751 765 10.1189/jlb.0708405 19218482 

  181. 181. Kanther M. Sun X. Muhlbauer M. Mackey L.C. Flynn E.J. 3rd Bagnat M. Jobin C. Rawls J.F. Microbial colonization induces dynamic temporal and spatial patterns of NF-kappaB activation in the zebrafish digestive tract Gastroenterology 2011 141 197 207 10.1053/j.gastro.2011.03.042 21439961 

  182. 182. Ogryzko N.V. Lewis A. Wilson H.L. Meijer A.H. Renshaw S.A. Elks P.M. Hif-1alpha-Induced Expression of Il-1beta Protects against Mycobacterial Infection in Zebrafish J. Immunol. 2019 202 494 502 10.4049/jimmunol.1801139 30552162 

  183. 183. Tsarouchas T.M. Wehner D. Cavone L. Munir T. Keatinge M. Lambertus M. Underhill A. Barrett T. Kassapis E. Ogryzko N. Dynamic control of proinflammatory cytokines Il-1beta and Tnf-alpha by macrophages in zebrafish spinal cord regeneration Nat. Commun. 2018 9 4670 10.1038/s41467-018-07036-w 30405119 

  184. 184. Feng J. Zhang C. Lischinsky J.E. Jing M. Zhou J. Wang H. Zhang Y. Dong A. Wu Z. Wu H. A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine Neuron 2019 102 745 761 10.1016/j.neuron.2019.02.037 30922875 

  185. 185. Rawls J.F. Mahowald M.A. Ley R.E. Gordon J.I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection Cell 2006 127 423 433 10.1016/j.cell.2006.08.043 17055441 

  186. 186. Roeselers G. Mittge E.K. Stephens W.Z. Parichy D.M. Cavanaugh C.M. Guillemin K. Rawls J.F. Evidence for a core gut microbiota in the zebrafish ISME J. 2011 5 1595 1608 10.1038/ismej.2011.38 21472014 

  187. 187. Kostic A.D. Howitt M.R. Garrett W.S. Exploring host-microbiota interactions in animal models and humans Genes Dev. 2013 27 701 718 10.1101/gad.212522.112 23592793 

  188. 188. de Abreu M.S. Giacomini A. Sysoev M. Demin K.A. Alekseeva P.A. Spagnoli S.T. Kalueff A.V. Modeling gut-brain interactions in zebrafish Brain Res. Bull. 2019 148 55 62 10.1016/j.brainresbull.2019.03.003 30890360 

  189. 189. Rawls J.F. Samuel B.S. Gordon J.I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota Proc. Natl. Acad. Sci. USA 2004 101 4596 4601 10.1073/pnas.0400706101 15070763 

  190. 190. Bates J.M. Mittge E. Kuhlman J. Baden K.N. Cheesman S.E. Guillemin K. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation Dev. Biol. 2006 297 374 386 10.1016/j.ydbio.2006.05.006 16781702 

  191. 191. Bates J.M. Akerlund J. Mittge E. Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota Cell Host Microbe 2007 2 371 382 10.1016/j.chom.2007.10.010 18078689 

  192. 192. Semova I. Carten J.D. Stombaugh J. Mackey L.C. Knight R. Farber S.A. Rawls J.F. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish Cell Host Microbe 2012 12 277 288 10.1016/j.chom.2012.08.003 22980325 

  193. 193. Falcinelli S. Rodiles A. Unniappan S. Picchietti S. Gioacchini G. Merrifield D.L. Carnevali O. Probiotic treatment reduces appetite and glucose level in the zebrafish model Sci. Rep. 2016 6 18061 10.1038/srep18061 26727958 

  194. 194. Okazaki F. Zang L. Nakayama H. Chen Z. Gao Z.J. Chiba H. Hui S.P. Aoki T. Nishimura N. Shimada Y. Microbiome Alteration in Type 2 Diabetes Mellitus Model of Zebrafish Sci. Rep. 2019 9 867 10.1038/s41598-018-37242-x 30696861 

  195. 195. Bertotto L.B. Catron T.R. Tal T. Exploring interactions between xenobiotics, microbiota, and neurotoxicity in zebrafish Neurotoxicology 2020 76 235 244 10.1016/j.neuro.2019.11.008 31783042 

  196. 196. Luczynski P. McVey Neufeld K.A. Oriach C.S. Clarke G. Dinan T.G. Cryan J.F. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior Int. J. Neuropsychopharmacol. 2016 19 10.1093/ijnp/pyw020 

  197. 197. Davis D.J. Bryda E.C. Gillespie C.H. Ericsson A.C. Microbial modulation of behavior and stress responses in zebrafish larvae Behav. Brain Res. 2016 311 219 227 10.1016/j.bbr.2016.05.040 27217102 

  198. 198. Phelps D. Brinkman N.E. Keely S.P. Anneken E.M. Catron T.R. Betancourt D. Wood C.E. Espenschied S.T. Rawls J.F. Tal T. Microbial colonization is required for normal neurobehavioral development in zebrafish Sci. Rep. 2017 7 11244 10.1038/s41598-017-10517-5 28894128 

  199. 199. Davis D.J. Doerr H.M. Grzelak A.K. Busi S.B. Jasarevic E. Ericsson A.C. Bryda E.C. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish Sci. Rep. 2016 6 33726 10.1038/srep33726 27641717 

  200. 200. Borrelli L. Aceto S. Agnisola C. De Paolo S. Dipineto L. Stilling R.M. Dinan T.G. Cryan J.F. Menna L.F. Fioretti A. Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish Sci. Rep. 2016 6 30046 10.1038/srep30046 27416816 

  201. 201. Kalueff A.V. Stewart A.M. Gerlai R. Zebrafish as an emerging model for studying complex brain disorders Trends Pharmacol. Sci. 2014 35 63 75 10.1016/j.tips.2013.12.002 24412421 

  202. 202. Meshalkina D.A. Kizlyk M.N. Kysil E.V. Collier A.D. Echevarria D.J. Abreu M.S. Barcellos L.J. Song C. Warnick J.E. Kyzar E.J. Zebrafish models of autism spectrum disorder Exp. Neurol. 2018 299 207 216 10.1016/j.expneurol.2017.02.004 28163161 

  203. 203. Sailer L. Duclot F. Wang Z. Kabbaj M. Consequences of prenatal exposure to valproic acid in the socially monogamous prairie voles Sci. Rep. 2019 9 2453 10.1038/s41598-019-39014-7 30792426 

  204. 204. Maaswinkel H. Zhu L. Weng W. Assessing social engagement in heterogeneous groups of zebrafish: A new paradigm for autism-like behavioral responses PLoS ONE 2013 8 e75955 10.1371/journal.pone.0075955 24116082 

  205. 205. Chen J. Lei L. Tian L. Hou F. Roper C. Ge X. Zhao Y. Chen Y. Dong Q. Tanguay R.L. Developmental and behavioral alterations in zebrafish embryonically exposed to valproic acid (VPA): An aquatic model for autism Neurotoxicol. Teratol. 2018 66 8 16 10.1016/j.ntt.2018.01.002 29309833 

  206. 206. Rea V. Van Raay T.J. Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts Front. Mol. Neurosci. 2020 13 10.3389/fnmol.2020.575575 

  207. 207. Kim O.-H. Cho H.-J. Han E. Hong T.I. Ariyasiri K. Choi J.-H. Hwang K.-S. Jeong Y.-M. Yang S.-Y. Yu K. Zebrafish knockout of Down syndrome gene, DYRK1A, shows social impairments relevant to autism Mol. Autism. 2017 8 50 10.1186/s13229-017-0168-2 29021890 

  208. 208. Liu C.X. Li C.Y. Hu C.C. Wang Y. Lin J. Jiang Y.H. Li Q. Xu X. CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors Mol. Autism. 2018 9 23 10.1186/s13229-018-0204-x 29619162 

  209. 209. James D.M. Kozol R.A. Kajiwara Y. Wahl A.L. Storrs E.C. Buxbaum J.D. Klein M. Moshiree B. Dallman J.E. Intestinal dysmotility in a zebrafish (Danio rerio) shank3a;shank3b mutant model of autism Mol. Autism. 2019 10 3 10.1186/s13229-018-0250-4 30733854 

  210. 210. Liu F. Li J. Wu F. Zheng H. Peng Q. Zhou H. Altered composition and function of intestinal microbiota in autism spectrum disorders: A systematic review Transl. Psychiatry 2019 9 43 10.1038/s41398-019-0389-6 30696816 

  211. 211. Bruckner J.J. Stednitz S.J. Grice M.Z. Larsch J. Tallafuss A. Washbourne P. Eisen J.S. The microbiota promotes social behavior by neuro-immune modulation of neurite complexity BioRxiv 2020 10.1101/2020.05.01.071373 

  212. 212. Nery L.R. Eltz N.S. Hackman C. Fonseca R. Altenhofen S. Guerra H.N. Freitas V.M. Bonan C.D. Vianna M.R. Brain intraventricular injection of amyloid-beta in zebrafish embryo impairs cognition and increases tau phosphorylation, effects reversed by lithium PLoS ONE 2014 9 e105862 10.1371/journal.pone.0105862 25187954 

  213. 213. Javed I. Peng G. Xing Y. Yu T. Zhao M. Kakinen A. Faridi A. Parish C.L. Ding F. Davis T.P. Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy Nat. Commun. 2019 10 3780 10.1038/s41467-019-11762-0 31439844 

  214. 214. Ozcan G.G. Lim S. Leighton P. Allison W.T. Rihel J. Sleep is bi-directionally modified by amyloid beta oligomers Elife 2020 9 e53995 10.7554/eLife.53995 32660691 

  215. 215. Bhattarai P. Thomas A.K. Cosacak M.I. Papadimitriou C. Mashkaryan V. Froc C. Reinhardt S. Kurth T. Dahl A. Zhang Y. IL4/STAT6 Signaling Activates Neural Stem Cell Proliferation and Neurogenesis upon Amyloid-beta42 Aggregation in Adult Zebrafish Brain Cell Rep. 2016 17 941 948 10.1016/j.celrep.2016.09.075 27760324 

  216. 216. Bhattarai P. Cosacak M.I. Mashkaryan V. Demir S. Popova S.D. Govindarajan N. Brandt K. Zhang Y. Chang W. Ampatzis K. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer’s model of adult zebrafish brain PLoS Biol. 2020 18 e3000585 10.1371/journal.pbio.3000585 31905199 

  217. 217. Paquet D. Bhat R. Sydow A. Mandelkow E.M. Berg S. Hellberg S. Falting J. Distel M. Koster R.W. Schmid B. A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation J. Clin. Investig. 2009 119 1382 1395 10.1172/JCI37537 19363289 

  218. 218. Lopez A. Lee S.E. Wojta K. Ramos E.M. Klein E. Chen J. Boxer A.L. Gorno-Tempini M.L. Geschwind D.H. Schlotawa L. A152T tau allele causes neurodegeneration that can be ameliorated in a zebrafish model by autophagy induction Brain 2017 140 1128 1146 10.1093/brain/awx005 28334843 

  219. 219. Cosacak M.I. Bhattarai P. Bocova L. Dzewas T. Mashkaryan V. Papadimitriou C. Brandt K. Hollak H. Antos C.L. Kizil C. Human TAU(P301L) overexpression results in TAU hyperphosphorylation without neurofibrillary tangles in adult zebrafish brain Sci. Rep. 2017 7 12959 10.1038/s41598-017-13311-5 29021554 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로