최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Energies, v.14 no.5, 2021년, pp.1407 -
Haryanto, Agus (Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro 1, Bandar Lampung 35145, Indonesia) , Hidayat, Wahyu (Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro 1, Bandar Lampung 35145, Indonesia) , Hasanudin, Udin (Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro 1, Bandar Lampung 35145, Indonesia) , Iryani, Dewi Agustina (Faculty of Engineering, University of Lampung, Jl. Sumantri Brojonegoro 1, Bandar Lampung 35145, Indonesia) , Kim, Sangdo (Climate Change Research Division, Korean Institute of Energy Research, Daejon 34129, Korea) , Lee, Sihyun (Climate Change Research Division, Korean Institute of Energy Research, Daejon 34129, Korea) , Yoo, Jiho (Climate Change Research Division, Korean Institute of Energy Research, Daejon 34129, Korea)
The wood processing industry produces a significant amount of wood waste. Biomass valorization through pyrolysis has the potential to increase the added value of wood wastes. Pyrolysis is an important thermochemical process that can produce solid, liquid, and gas products. This paper aims to review ...
Deputi Bidang Koordinasi Perniagaan dan Industri (2020, December 31). Rapat Koordinasi Pembahasan Industri Hasil Kayu 2019. Available online: http://asmindo.or.id/wp-content/uploads/2019/02/190220-Industri-Kayu_Rev4-1.pdf.
Roda, J.-M., Cadène, P., Guizol, P., Santoso, L., and Fauzan, A.U. (2007). Atlas of Wooden Furniture Industry in Jepara, Indonesia, Center for International Forestry Research.
Badan Pusat Statistik (2020). Statistical Yearbook of Indonesia 2020.
Darusman, D. (1988). Aspek Ekonomi Industri Pemanfaatan Limbah Kayu, IPB Bogor. Fakultas Kehutanan.
Reith Biomass Pyrolysis for Chemicals Biofuels 2011 10.4155/bfs.10.88 2 185
Simarmata Volume and Classifiaation of Logging Waste at Several Forest Companies in Sumatera and Kalimantan (in Bahasa Indonesia) J. Penelit. Has. Hutan 1985 2 17
Budiaman Logging Residues of Low Harvest Intensity in Indonesian Forest Concession (in Bahasa Indonesia) JIPI 2020 10.18343/jipi.25.1.145 25 145
Matangaran Exploitation Factor and Quantification of Wood Waste in Order to Improve Efficiency of Natural Forest Harvesting (in Bahasa Indonesia) J. Bumi Lestari 2013 13 384
Muhdi Wood Waste Caused by Reduced Impact Logging in Indonesian Selective Cutting and Planting System, North Borneo, Indonesia Int. J. Sci. Basic Appl. Res. 2016 30 86
Sianturi Exploitation Factor in the Pulau Laut Depterocarp Forest (in Bahasa Indonesia) Jumal Penelit. Has. Hutan 1984 1 1
Simarmata The Exploitation Factor for Shorea spp. in Jambi, Central Kalimantan and East Kalimantan (in Bahasa Indonesia) J. Penelit. Has. Hutan 1985 2 10
Chen Effect of Torrefaction Pretreatment on the Pyrolysis of Rubber Wood Sawdust Analyzed by Py-GC/MS Bioresour. Technol. 2018 10.1016/j.biortech.2018.03.033 259 469
The Wood Database (2021, January 06). Balau. Available online: https://www.wood-database.com/balau/.
Ahmad, Z.S., Munaim, M.S.A., and Said, F.M. (2016). Characterization of Meranti Wood Sawdust and Removal of Lignin Content Using Pre-Treatment Process, Universiti Malaysia Pahang.
Mazlan Fast Pyrolysis of Hardwood Residues Using a Fixed Bed Drop-Type Pyrolyzer Energy Convers. Manag. 2015 10.1016/j.enconman.2015.03.102 98 208
Azura Effect of Fast Pyrolysis Operating Conditions on Product Yield of Red Meranti Sawdust Int. Res. J. Eng. Technol. (Irjet) 2017 4 607
Rani An Experimental Characterization of Physical Properties of Timber Woods Nanotechnology 2017 1 41
The Wood Database (2021, January 06). Teak. Available online: https://www.wood-database.com/teak/.
Hidayati Sifat Fisika Dan Mekanika Kayu Jati Unggul “Mega” Dan Kayu Jati Konvensional Yang Di Tanam Di Hutan Pendidikan, Wanagama, Gunungkidul, Yogyakarta J. Ilmu Kehutan. 2016 10.22146/jik.16510 10 98
Balogun Devolatilisation Kinetics and Pyrolytic Analyses of Tectona grandis (Teak) Bioresour. Technol. 2014 10.1016/j.biortech.2014.01.007 156 57
Peng Co-Combustion Interactions between Teak Sawdust and Sewage Sludge with Additives BioResources 2019 10.15376/biores.14.1.1466-1481 14 1466
Kartikawati Color and Dimensional Stability of Fast Growing Teakwood by Mild Pyrolysis and Combination Process IOP Conf. Ser. Mater. Sci. Eng. 2020 10.1088/1757-899X/935/1/012014 935 012014
The Wood Database (2021, January 06). Rubberwood. Available online: https://www.wood-database.com/rubberwood/.
Sultan Syngas Production from Rubberwood Biomass in Downdraft Gasifier Combined with Wet Scrubbing: Investigation of Tar and Solid Residue JSM 2020 10.17576/jsm-2020-4907-23 49 1729
Hartati Wood Characteristic of Superior Sengon Collection and Prospect of Wood Properties Improvement through Genetic Engineering Wood Res. J. 2010 1 103
Saputro Karakterisasi Limbah Pengolahan Kayu Sengon Sebagai Bahan Bakar Altrnatif Sainteknol J. Sain Dan Teknol. 2016 14 21
Listyanto Wood Quality of Paraserianthes falcataria L. Nielsen Syn Wood from Three Year Rotation of Harvesting for Construction Application Wood Res. 2018 63 497
The Wood Database (2021, January 06). Batai. Available online: https://www.wood-database.com/batai/.
Dulsalam Logging Recovery of Meranti in West Sumatera, West Kalimantan and South Kalimantan (in Bahasa Indonesia) J. Penelit. Has. Hutan 1988 5 47
Wahyudi Spacing Effect on Tree Growth and Several Physical-Mechanical Properties of Faster-Grown Teak Wood (in Bahasa Indonesia) J. Ilmu Pertan. Indones. 2014 19 204
Kurinobu A Provisional Growth Model with a Size-Density Relationship for a Plantation of Paraserianthes falcataria Derived from Measurements Taken over 2 Years in Pare, Indonesia J. For. Res. 2007 10.1007/s10310-007-0007-y 12 230
Krisnawati, H., Varis, E., Kallio, M., and Kanninen, M. (2011). Paraserianthes falcataria (L.) Nielsen: Ekologi, Silvikultur Dan Produktivitas, CIFOR.
10.3390/f10080638 Hytönen, J., Nurmi, J., Kaakkurivaara, N., and Kaakkurivaara, T. (2019). Rubber Tree (Hevea brasiliensis) Biomass, Nutrient Content, and Heating Values in Southern Thailand. Forests, 10.
Ratnasingam The Prospects of Rubberwood Biomass Energy Production in Malaysia BioResources 2015 10.15376/biores.10.2.2526-2548 10 2526
Simanjuntak Producer Gas Production of Indonesian Biomass in Fixed-Bed Downdraft Gasifier as an Alternative Fuels for Internal Combustion Engines J. Phys. Conf. Ser. 2018 10.1088/1742-6596/970/1/012019 970 012019
Balsiger, J., Bahdon, J., and Whiteman, A. (2000). The Utilization, Processing and Demand for Rubberwood as a Source of Wood Supply, FAO Forestry Policy and Planning Division. Asia-Pacific Forestry Sector Outlook Study.
Wahyudi, W. (2013). Dasar-Dasar Penggergajian Kayu, Pohon Cahaya. [1st ed.].
Koufopanosi Kinetic Modelling of the Pyrolysis of Biomass and Biomass Components Can. J. Chem. Eng. 1989 10.1002/cjce.5450670111 67 75
Arin An Overview of Biomass Pyrolysis Energy Sources 2002 10.1080/00908310252889979 24 471
Bridgwater Biomass Fast Pyrolysis Therm. Sci. 2004 10.2298/TSCI0402021B 8 21
Bridgwater Overview of fast pyrolysis of biomass for the production of liquid fuels Developments in Thermochemical Biomass Conversion 1997 Volume 1 5
Basu, P. (2010). Biomass Gasification and Pyrolysis: Practical Design and Theory, Academic Press.
Mohan Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review Energy Fuels 2006 10.1021/ef0502397 20 848
Goldstein Thermal Deterioration of Wood Wood Technology: Chemical Aspects 1977 Volume 43 57
Balonek, C.M. (2011). Autothermal Oxidative Pyrolysis of Biomass Feedstocks over Noble Metal Catalysts to Liquid Products. [Ph.D. Thesis, University of Minnesota].
Jahirul Biofuels Production through Biomass Pyrolysis-A Technological Review Energies 2012 10.3390/en5124952 5 4952
Fang Introduction to Pyrolysis as a Thermo-Chemical Conversion Technology Production of Biofuels and Chemicals with Pyrolysis 2020 Volume 10 3
Uchimiya, S.M., Chang, S.X., and Bolan, N. (2016). Biochar. Biochar: Production, Characterization, and Applications, CRC Press.
Bridgwater An Overview of Fast Pyrolysis of Biomass Org. Geochem. 1999 10.1016/S0146-6380(99)00120-5 30 1479
Mazlan Characterizations of Bio-Char from Fast Pyrolysis of Meranti Wood Sawdust J. Phys. Conf. Ser. 2015 10.1088/1742-6596/622/1/012054 622 012054
Komarayati Manufacturing Activated Charcoal from Teakwood Sawdust (in Bahasa Indonesia) Bul. Penelit. Has. Hutan 1997 15 94
Ratnani Actived Carbon from Teak Wood, Jackfruit Wood, and Mango Wood Pyrolysis Process J. Phys. Conf. Ser. 2019 10.1088/1742-6596/1217/1/012055 1217 012055
Bardalai Characterisation of Pyrolysis Oil Derived from Teak Tree Saw Dust and Rice Husk J. Eng. Sci. Technol. 2018 13 242
Rahmat Generation of Wood-Waste Vinegar and Its Effectiveness as Plant Growth Regulator and Pest Insect Repellant BioResources 2014 10.15376/biores.9.4.6350-6360 9 6350
Lim, K.G., and Egashira, R. (2004). Pyrolysis and Characterization of the Products for Recycle of Rubberwood Residues. [Master’s Thesis, Tokyo Institute of Technology].
Ratanapisit Preliminary Evaluation of Production and Characterization of Wood Vinegar from Rubberwood Songklanakarin J. Sci. Technol. 2009 31 343
Hendrawan Effect of Carbonization Temperature Variations and Activator Agent Types on Activated Carbon Characteristics of Sengon Wood Waste (Paraserianthes falcataria (L.) Nielsen) IOP Conf. Ser. Earth Envrion. Sci. 2019 10.1088/1755-1315/239/1/012006 239 012006
Nugrahaningtyas Local Wood’s Bio-Oil Upgrading Using Non-Sulfided (Co, Mo)/USY Catalyst IOP Conf. Ser. Mater. Sci. Eng. 2019 10.1088/1757-899X/578/1/012012 578 012012
Mazlan Fast Pyrolysis of Rubber Wood Sawdust via a Fluidized Bed Pyrolyzer: The Effect of Fluidization Gas Velocity Sindh Univ. Res. J. (Sci. Ser.) 2016 48 9
Gupta Experimental Process Parameters Optimization and In-Depth Product Characterizations for Teak Sawdust Pyrolysis Waste Manag. 2019 10.1016/j.wasman.2019.02.035 87 499
Putra Production of Coal-Like Solid Fuel from Albizia chinensis Sawdust Via Wet Torrefaction Process J. Ecol. Eng. 2020 10.12911/22998993/123502 21 183
Fryda Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis Agriculture 2015 10.3390/agriculture5041076 5 1076
Lehmann, J., and Joseph, S. (2009). Biochar for Environmental Management: Science and Technology, Earthscan.
10.3390/agriculture8100153 Suthar, R., Wang, C., Nunes, M., Chen, J., Sargent, S., Bucklin, R., and Gao, B. (2018). Bamboo Biochar Pyrolyzed at Low Temperature Improves Tomato Plant Growth and Fruit Quality. Agriculture, 8.
Biederman Biochar and Its Effects on Plant Productivity and Nutrient Cycling: A Meta-Analysis GCB Bioenergy 2013 10.1111/gcbb.12037 5 202
Sheng Biochar Alters Microbial Community and Carbon Sequestration Potential across Different Soil PH Sci. Total Environ. 2018 10.1016/j.scitotenv.2017.11.337 622-623 1391
10.3390/agronomy9050225 Sánchez-Monedero, M.A., Cayuela, M.L., Sánchez-García, M., Vandecasteele, B., D’Hose, T., López, G., Martínez-Gaitán, C., Kuikman, P.J., Sinicco, T., and Mondini, C. (2019). Agronomic Evaluation of Biochar, Compost and Biochar-Blended Compost across Different Cropping Systems: Perspective from the European Project FERTIPLUS. Agronomy, 9.
10.3390/agronomy6010013 Alotaibi, K., and Schoenau, J. (2016). Application of Two Bioenergy Byproducts with Contrasting Carbon Availability to a Prairie Soil: Three-Year Crop Response and Changes in Soil Biological and Chemical Properties. Agronomy, 6.
Chan Agronomic Values of Greenwaste Biochar as a Soil Amendment Soil Res. 2007 10.1071/SR07109 45 629
Ding Biochar to Improve Soil Fertility. A Review Agron. Sustain. Dev. 2016 10.1007/s13593-016-0372-z 36 36
Jain Highly Mesoporous Carbon from Teak Wood Sawdust as Prospective Electrode for the Construction of High Energy Li-Ion Capacitors Electrochim. Acta 2017 10.1016/j.electacta.2017.01.060 228 131
Antolini Graphene as a New Carbon Support for Low-Temperature Fuel Cell Catalysts Appl. Catal. B Environ. 2012 10.1016/j.apcatb.2012.04.022 123-124 52
Sudarsono High Performance Iron-Based Oxygen Reduction Catalyst Supported on Sengon Wood-Derived Reduced Graphene Oxide in Acidic Medium IOP Conf. Ser. Earth Environ. Sci. 2020 10.1088/1755-1315/463/1/012060 463 012060
Sudarsono Noble-free Oxygen Reduction Reaction Catalyst Supported on Sengon Wood (Paraserianthes falcataria L.) Derived Reduced Graphene Oxide for Fuel Cell Application Int. J. Energy Res. 2020 10.1002/er.5015 44 1761
Sudarsono Sengon Wood-Derived RGO Supported Fe-Based Electrocatalyst with Stabilized Graphitic N-Bond for Oxygen Reduction Reaction in Acidic Medium Int. J. Hydrogen Energy 2020 10.1016/j.ijhydene.2020.05.158 45 23237
Oasmaa Fuel Oil Quality of Biomass Pyrolysis Oils: State of the Art for the End Users Energy Fuels 1999 10.1021/ef980272b 13 914
Oasmaa Fast Pyrolysis Bio-Oils from Wood and Agricultural Residues Energy Fuels 2010 10.1021/ef901107f 24 1380
Parray Fuel Properties of Ethanol-Diesel Blends for Use as Engine Fuel Int. J. Sci. Res. 2015 4 2443
Zhang Review of Biomass Pyrolysis Oil Properties and Upgrading Research Energy Convers. Manag. 2007 10.1016/j.enconman.2006.05.010 48 87
Chiaramonti Power Generation Using Fast Pyrolysis Liquids from Biomass Renew. Sustain. Energy Rev. 2007 10.1016/j.rser.2005.07.008 11 1056
10.4271/2001-24-0041 Bertoli, C., Calabria, R., D’Alessio, J., Giacomo, N.D., Lazzaro, M., Massoli, P., and Moccia, V. (2001, January 23-27). Diesel Engines Fueled by Wood Pyrolysis Oil: Feasibility and Perspectives. Proceedings of the 5th International Conference Internal Combustion Engines, Naples, Italy.
Bridgwater Review of Fast Pyrolysis of Biomass and Product Upgrading Biomass Bioenergy 2012 10.1016/j.biombioe.2011.01.048 38 68
10.1016/j.apenergy.2013.11.040 Lehto, J., Oasmaa, A., Solantausta, Y., Kytö, M., and Chiaramonti, D. (2013). Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-Oils, VTT.
Solantausta Wood-Pyrolysis Oil as Fuel in a Diesel-Power Plant Bioresour. Technol. 1993 10.1016/0960-8524(93)90071-I 46 177
Shihadeh Diesel Engine Combustion of Biomass Pyrolysis Oils Energy Fuels 2000 10.1021/ef990044x 14 260
Haryanto Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review Energy Fuels 2005 10.1021/ef0500538 19 2098
Iliopoulou Overview of Catalytic Upgrading of Biomass Pyrolysis Vapors toward the Production of Fuels and High-Value Chemicals Wires Energy Environ. 2019 10.1002/wene.322 8 e322
Leng Bio-Oil Upgrading by Emulsification/Microemulsification: A Review Energy 2018 10.1016/j.energy.2018.07.117 161 214
Chong Emulsification of Bio-Oil and Diesel Chem. Eng. Trans. 2017 56 1801
10.3390/molecules24122250 Zhang, S., Yang, X., Zhang, H., Chu, C., Zheng, K., Ju, M., and Liu, L. (2019). Liquefaction of Biomass and Upgrading of Bio-Oil: A Review. Molecules, 24.
Paenpong Effect of Filter Media Size, Mass Flow Rate and Filtration Stage Number in a Moving-Bed Granular Filter on the Yield and Properties of Bio-Oil from Fast Pyrolysis of Biomass Bioresour. Technol. 2013 10.1016/j.biortech.2013.03.200 139 34
Krutof Upgrading of Biomass Sourced Pyrolysis Oil Review: Focus on Co-Pyrolysis and Vapour Upgrading during Pyrolysis Biomass Convers. Biorefin. 2018 10.1007/s13399-018-0326-6 8 775
Pidtasang Influence of Alcohol Addition on Properties of Bio-Oil Produced from Fast Pyrolysis of Eucalyptus Bark in a Free-Fall Reactor J. Ind. Eng. Chem. 2013 10.1016/j.jiec.2013.02.031 19 1851
Mei Effect of Methanol Addition on Properties and Aging Reaction Mechanism of Bio-Oil during Storage Fuel 2019 10.1016/j.fuel.2019.02.012 244 499
McVey Separation of BTX Chemicals from Biomass Pyrolysis Oils via Continuous Flash Distillation Biomass Convers. Biorefin. 2020 10.1007/s13399-019-00409-1 10 15
Vispute Production of Hydrogen, Alkanes and Polyols by Aqueous Phase Processing of Wood-Derived Pyrolysis Oils Green Chem. 2009 10.1039/b912522c 11 1433
Liao Overview of Bio-Oil Upgrading via Catalytic Cracking AMR 2013 10.4028/www.scientific.net/AMR.827.25 827 25
Kuoppala Catalytic Conversion of Biomass Pyrolysis Vapours with Zinc Oxide J. Anal. Appl. Pyrolysis 2000 10.1016/S0165-2370(99)00071-6 55 119
Zhang Hydrotreatment of Bio-Oil over Ni-Based Catalyst Bioresour. Technol. 2013 10.1016/j.biortech.2012.07.119 127 306
Zhang Study on the Preparation of Biohydrocarbon Fuel by Catalytic Hydrogenation of Swida wilsoniana Pyrolysis Products Adv. Mater. Sci. Eng. 2020 10.1155/2020/3569125 2020 3569125
Li Hydrodeoxygenation of Lignin-Derived Bio-Oil Using Molecular Sieves Supported Metal Catalysts: A Critical Review Renew. Sustain. Energy Rev. 2017 10.1016/j.rser.2016.12.057 71 296
Sanna Hydrodeoxygenation of the Aqueous Fraction of Bio-Oil with Ru/C and Pt/C Catalysts Appl. Catal. B Environ. 2015 10.1016/j.apcatb.2014.10.013 165 446
Schmitt Hydrotreatment of Fast Pyrolysis Bio-Oil Fractions Over Nickel-Based Catalyst Top. Catal. 2018 10.1007/s11244-018-1009-z 61 1769
Wu Hydrogen Production via Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in a Two-Stage Fixed Bed Reactor System Fuel Process. Technol. 2008 10.1016/j.fuproc.2008.05.018 89 1306
Lan Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in Fixed Bed and Fluidized Bed Reactors Chem. Eng. Technol. 2010 10.1002/ceat.201000169 33 2021
Pan Hydrogen Production by Catalytic Steam Reforming of Bio-Oil, Naphtha and CH4 over C12A7-Mg Catalyst Chin. J. Chem. Phys. 2006 10.1360/cjcp2006.19(3).190.3 19 190
Pawar Comprehensive Review on Pyrolytic Oil Production, Upgrading and Its Utilization J. Mater. Cycles Waste Manag. 2020 10.1007/s10163-020-01063-w 22 1712
Yang Overview of Upgrading of Pyrolysis Oil of Biomass Energy Procedia 2014 10.1016/j.egypro.2014.11.1087 61 1306
Siedlecki Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels-A Review Energies 2011 10.3390/en4030389 4 389
Baratieri The Use of Biomass Syngas in IC Engines and CCGT Plants: A Comparative Analysis Appl. Therm. Eng. 2009 10.1016/j.applthermaleng.2009.05.003 29 3309
Hagos Trends of Syngas as a Fuel in Internal Combustion Engines Adv. Mech. Eng. 2014 10.1155/2014/401587 6 401587
Hossain Pyrolysis Liquids and Gases as Alternative Fuels in Internal Combustion Engines-A Review Renew. Sustain. Energy Rev. 2013 10.1016/j.rser.2012.12.031 21 165
Abidin Potential Assessment and Development Concession Charcoal Wood in the Ranggang Luar Village, Takisung Sub District, Tanah Laut, South Kalimantan (in Bahasa Indonesia) J. Hutan Trop. 2018 10.20527/jht.v6i2.5398 6 108
Sulistyo, J., Marsoem, S.N., Kholik, A., and Wibowo, M.N. (2017). Proses Pengarangan Dari Tungku/Dapur Pengarang Konvensional Dan Permanen Di Wonosari, Gunungkidul. Proceedings of the Proseding Seminar Nasional Masyarakat Peneliti Kayu Indonesia XX, MAPEKI (Masyarakat Peneliti Kayu Indonesia).
Tirono Efek Suhu Pada Proses Pengarangan Terhadap Nilai Kalor Arang Tempurung Kelapa (Coconut Shell Carchoal) J. Neutrino 2011 3 143
Iskandar, H., and Santosa, K.D. (2005). Panduan Singkat Cara Pembuatan Arang Kayu Alternatif Pemanfaatan Limbah Kayu Oleh Masyarakat, CIFOR (Center for International Forestry Research).
World Integrated Trade Solution, (WITS) (2021, February 11). Indonesia Wood; Charcoal (Including Shell or Nut Charcoal), Whether or Not Agglomerated Exports by Country in 2019. Available online: https://wits.worldbank.org/trade/comtrade/en/country/IDN/year/2019/tradeflow/Exports/partner/ALL/product/440200.
Zion Market Research (2021, February 24). Global Biochar Market Size Expected to Reach $585.0 Million by 2020. Available online: http://www.globenewswire.com/news-release/2017/06/06/1008630/0/en/Global-Biochar-Market-Size-Expected-to-Reach-585-0-Million-by-2020.html.
Acumen Research and Consulting (2021, February 24). USD 15 Mn Biochar Market Size Expected to Reach between 2014-2023 Says Acumen Research and Consulting Experts. Available online: http://www.globenewswire.com/news-release/2017/11/29/1210264/0/en/USD-15-Mn-Biochar-Market-Size-Expected-to-Reach-between-2014-2023-Says-Acumen-Research-and-Consulting-Experts.html.
IMARC Group (2021, February 24). Biochar Market Size, Share, Price Trends and Forecast 2020-2025. Available online: https://www.imarcgroup.com/biochar-market.
(2021, February 24). Grand View Research Biochar Market Size Worth $3.1 Billion By 2025, CAGR: 13.2%. Available online: https://www.grandviewresearch.com/press-release/global-biochar-market.
Chen Past, Present, and Future of Biochar Biochar 2019 10.1007/s42773-019-00008-3 1 75
Wu Biochar Is Superior to Lime in Improving Acidic Soil Properties and Fruit Quality of Satsuma Mandarin Sci. Total Environ. 2020 10.1016/j.scitotenv.2020.136722 714 136722
Liu, J. (2015). The Application of Biochar as a Soil Amendment in Land Reclamation. [Master’s Thesis, University of Alberta].
Nursyamsi Effect of Biochar on Peat Soil Fertility and NPK Uptake by Corn Agrivita J. Agric. Sci. 2019 41 64
Norwegian Geotechnical Institute (2014). Biochar on Acidic Agricultural Lands in Indonesia and Malaysia.
Berek The Potential of Biochar as an Acid Soil Amendment to Support Indonesian Food and Energy Security-A Review Pertanika J. Trop. Agric. Sci. 2019 42 745
Juhrian The Effect of Biochar, Lime, and Compost on The Properties of Acid Sulphate Soil J. Wetl. Environ. Manag. 2020 8 129
Sukarman Tin Mining Process and Its Effects on Soils in Bangka Belitung Islands Province, Indonesia Sains Tanah J. Soil Sci. Agroclimatol. 2020 17 180
President of The Republic of Indonesia (2014). Regulation of The Government of Indonesia No.12/2014 on the Types and Rates of Non-Tax State Revenues Applicable at the Indonesia Ministry of Forestry.
Jirka, S., and Tomlinson, T. (2015). State of the Biochar Industry 2014: A Survey of Commercial Activity in the Biochar Sector, International Biochar Initiative (IBI).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.