$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Valorization of Indonesian Wood Wastes through Pyrolysis: A Review 원문보기

Energies, v.14 no.5, 2021년, pp.1407 -   

Haryanto, Agus (Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro 1, Bandar Lampung 35145, Indonesia) ,  Hidayat, Wahyu (Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro 1, Bandar Lampung 35145, Indonesia) ,  Hasanudin, Udin (Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro 1, Bandar Lampung 35145, Indonesia) ,  Iryani, Dewi Agustina (Faculty of Engineering, University of Lampung, Jl. Sumantri Brojonegoro 1, Bandar Lampung 35145, Indonesia) ,  Kim, Sangdo (Climate Change Research Division, Korean Institute of Energy Research, Daejon 34129, Korea) ,  Lee, Sihyun (Climate Change Research Division, Korean Institute of Energy Research, Daejon 34129, Korea) ,  Yoo, Jiho (Climate Change Research Division, Korean Institute of Energy Research, Daejon 34129, Korea)

Abstract AI-Helper 아이콘AI-Helper

The wood processing industry produces a significant amount of wood waste. Biomass valorization through pyrolysis has the potential to increase the added value of wood wastes. Pyrolysis is an important thermochemical process that can produce solid, liquid, and gas products. This paper aims to review ...

참고문헌 (155)

  1. Alviya Efficiency and Productivity of Indonesian Wood Processing in the Period 2004-2007 with Non Parametric Approach Data Envelopment Analysis (In Bahasa Indonesia) J. Penelit. Sos. Dan Ekon. Kehutan. 2011 10.20886/jsek.2011.8.2.122-138 8 122 

  2. Deputi Bidang Koordinasi Perniagaan dan Industri (2020, December 31). Rapat Koordinasi Pembahasan Industri Hasil Kayu 2019. Available online: http://asmindo.or.id/wp-content/uploads/2019/02/190220-Industri-Kayu_Rev4-1.pdf. 

  3. Roda, J.-M., Cadène, P., Guizol, P., Santoso, L., and Fauzan, A.U. (2007). Atlas of Wooden Furniture Industry in Jepara, Indonesia, Center for International Forestry Research. 

  4. Badan Pusat Statistik (2020). Statistical Yearbook of Indonesia 2020. 

  5. Darusman, D. (1988). Aspek Ekonomi Industri Pemanfaatan Limbah Kayu, IPB Bogor. Fakultas Kehutanan. 

  6. 10.1007/978-1-4757-0301-6 Sofer, S.S., and Zaborsky, O.R. (1981). Biomass Conversion Processes for Energy and Fuels, Springer. 

  7. Reith Biomass Pyrolysis for Chemicals Biofuels 2011 10.4155/bfs.10.88 2 185 

  8. Simarmata Volume and Classifiaation of Logging Waste at Several Forest Companies in Sumatera and Kalimantan (in Bahasa Indonesia) J. Penelit. Has. Hutan 1985 2 17 

  9. Budiaman Logging Residues of Low Harvest Intensity in Indonesian Forest Concession (in Bahasa Indonesia) JIPI 2020 10.18343/jipi.25.1.145 25 145 

  10. Matangaran Exploitation Factor and Quantification of Wood Waste in Order to Improve Efficiency of Natural Forest Harvesting (in Bahasa Indonesia) J. Bumi Lestari 2013 13 384 

  11. Soenarno The Study on Utilization and Waste Factor of Timber Harvesting at Natural Forest, West Papua (in Bahasa Indonesia) J. Penelit. Has. Hutan 2018 10.20886/jphh.2018.36.2.67-84 36 67 

  12. Muhdi Wood Waste Caused by Reduced Impact Logging in Indonesian Selective Cutting and Planting System, North Borneo, Indonesia Int. J. Sci. Basic Appl. Res. 2016 30 86 

  13. Sianturi Exploitation Factor in the Pulau Laut Depterocarp Forest (in Bahasa Indonesia) Jumal Penelit. Has. Hutan 1984 1 1 

  14. Simarmata The Exploitation Factor for Shorea spp. in Jambi, Central Kalimantan and East Kalimantan (in Bahasa Indonesia) J. Penelit. Has. Hutan 1985 2 10 

  15. Soenarno Logging Efficiency and Quality of Logging Waste in a Tropical Mountainous Forest: Case Study in the Licency Natural Forest Concessionary of PT. Roda Mas Timber Kalimantan (in Bahasa Indonesia) J. Penelit. Has. Hutan 2014 10.20886/jphh.2014.32.1.45-61 32 45 

  16. Soenarno Exploitation Factor in Limited Production Forest in Licenced Natural Forest PT Kemakmuran Berkah Timber (in Bahasa Indonesia) J. Penelit. Has. Hutan 2013 10.20886/jphh.2013.31.2.151-160 31 151 

  17. Chen Effect of Torrefaction Pretreatment on the Pyrolysis of Rubber Wood Sawdust Analyzed by Py-GC/MS Bioresour. Technol. 2018 10.1016/j.biortech.2018.03.033 259 469 

  18. The Wood Database (2021, January 06). Balau. Available online: https://www.wood-database.com/balau/. 

  19. Ahmad, Z.S., Munaim, M.S.A., and Said, F.M. (2016). Characterization of Meranti Wood Sawdust and Removal of Lignin Content Using Pre-Treatment Process, Universiti Malaysia Pahang. 

  20. Mazlan Fast Pyrolysis of Hardwood Residues Using a Fixed Bed Drop-Type Pyrolyzer Energy Convers. Manag. 2015 10.1016/j.enconman.2015.03.102 98 208 

  21. Azura Effect of Fast Pyrolysis Operating Conditions on Product Yield of Red Meranti Sawdust Int. Res. J. Eng. Technol. (Irjet) 2017 4 607 

  22. Rani An Experimental Characterization of Physical Properties of Timber Woods Nanotechnology 2017 1 41 

  23. The Wood Database (2021, January 06). Teak. Available online: https://www.wood-database.com/teak/. 

  24. Hidayati Sifat Fisika Dan Mekanika Kayu Jati Unggul “Mega” Dan Kayu Jati Konvensional Yang Di Tanam Di Hutan Pendidikan, Wanagama, Gunungkidul, Yogyakarta J. Ilmu Kehutan. 2016 10.22146/jik.16510 10 98 

  25. Basri Wood Basic Properties of Jati Plus Perhutani from Different Ages and Their Relationships to Drying Properties and Qualities (in Bahasa) J. Penelit. Has. Hutan 2013 10.20886/jphh.2013.31.2.93-102 31 93 

  26. Balogun Devolatilisation Kinetics and Pyrolytic Analyses of Tectona grandis (Teak) Bioresour. Technol. 2014 10.1016/j.biortech.2014.01.007 156 57 

  27. Peng Co-Combustion Interactions between Teak Sawdust and Sewage Sludge with Additives BioResources 2019 10.15376/biores.14.1.1466-1481 14 1466 

  28. Kartikawati Color and Dimensional Stability of Fast Growing Teakwood by Mild Pyrolysis and Combination Process IOP Conf. Ser. Mater. Sci. Eng. 2020 10.1088/1757-899X/935/1/012014 935 012014 

  29. The Wood Database (2021, January 06). Rubberwood. Available online: https://www.wood-database.com/rubberwood/. 

  30. Sultan Syngas Production from Rubberwood Biomass in Downdraft Gasifier Combined with Wet Scrubbing: Investigation of Tar and Solid Residue JSM 2020 10.17576/jsm-2020-4907-23 49 1729 

  31. Hartati Wood Characteristic of Superior Sengon Collection and Prospect of Wood Properties Improvement through Genetic Engineering Wood Res. J. 2010 1 103 

  32. Saputro Karakterisasi Limbah Pengolahan Kayu Sengon Sebagai Bahan Bakar Altrnatif Sainteknol J. Sain Dan Teknol. 2016 14 21 

  33. Listyanto Wood Quality of Paraserianthes falcataria L. Nielsen Syn Wood from Three Year Rotation of Harvesting for Construction Application Wood Res. 2018 63 497 

  34. The Wood Database (2021, January 06). Batai. Available online: https://www.wood-database.com/batai/. 

  35. Dulsalam Logging Recovery of Meranti in West Sumatera, West Kalimantan and South Kalimantan (in Bahasa Indonesia) J. Penelit. Has. Hutan 1988 5 47 

  36. Wahyudi Spacing Effect on Tree Growth and Several Physical-Mechanical Properties of Faster-Grown Teak Wood (in Bahasa Indonesia) J. Ilmu Pertan. Indones. 2014 19 204 

  37. 10.17528/cifor/003167 Pramono, A.A., Fauzi, M.A., Widyani, N., Heriansyah, I., and Roshetko, J.M. (2010). Pengelolaan Hutan Jati Rakyat-Panduan Lapangan Untuk Petani, Center for International Forestry Research (CIFOR). 

  38. Matangaran Teak Harvesting Waste at Banyuwangi East Java Perennial 2012 10.24259/perennial.v8i2.221 8 88 

  39. Kurinobu A Provisional Growth Model with a Size-Density Relationship for a Plantation of Paraserianthes falcataria Derived from Measurements Taken over 2 Years in Pare, Indonesia J. For. Res. 2007 10.1007/s10310-007-0007-y 12 230 

  40. Krisnawati, H., Varis, E., Kallio, M., and Kanninen, M. (2011). Paraserianthes falcataria (L.) Nielsen: Ekologi, Silvikultur Dan Produktivitas, CIFOR. 

  41. 10.3390/f10080638 Hytönen, J., Nurmi, J., Kaakkurivaara, N., and Kaakkurivaara, T. (2019). Rubber Tree (Hevea brasiliensis) Biomass, Nutrient Content, and Heating Values in Southern Thailand. Forests, 10. 

  42. Ratnasingam The Prospects of Rubberwood Biomass Energy Production in Malaysia BioResources 2015 10.15376/biores.10.2.2526-2548 10 2526 

  43. Agustina A Study on Institutions and Partnership in Rubberwood Marketing in South Sumatera Province (in Bahasa Indonesia) J. Penelit. Karet 2013 10.22302/jpk.v31i1.133 31 54 

  44. Simanjuntak Producer Gas Production of Indonesian Biomass in Fixed-Bed Downdraft Gasifier as an Alternative Fuels for Internal Combustion Engines J. Phys. Conf. Ser. 2018 10.1088/1742-6596/970/1/012019 970 012019 

  45. Balsiger, J., Bahdon, J., and Whiteman, A. (2000). The Utilization, Processing and Demand for Rubberwood as a Source of Wood Supply, FAO Forestry Policy and Planning Division. Asia-Pacific Forestry Sector Outlook Study. 

  46. Wahyudi, W. (2013). Dasar-Dasar Penggergajian Kayu, Pohon Cahaya. [1st ed.]. 

  47. Purwanto The Analysis of Variety of Wood Waste Material from Wood Industry in South Borneo J. Ris. Ind. Has. Hutan 2009 10.24111/jrihh.v1i1.864 1 14 

  48. Malik Sawing Recovery of Several Sawmills in Jepara J. Penelit. Kehutan 2011 10.20886/jphh.2011.29.4.331-342 29 331 

  49. 10.1201/b14561 Dahlquist, E. (2013). Biomass pyrolysis for energy and fuel production. Technologies for Converting Biomass to Useful Energy, CRC Press. 

  50. Koufopanosi Kinetic Modelling of the Pyrolysis of Biomass and Biomass Components Can. J. Chem. Eng. 1989 10.1002/cjce.5450670111 67 75 

  51. Arin An Overview of Biomass Pyrolysis Energy Sources 2002 10.1080/00908310252889979 24 471 

  52. Bridgwater Biomass Fast Pyrolysis Therm. Sci. 2004 10.2298/TSCI0402021B 8 21 

  53. Bridgwater Overview of fast pyrolysis of biomass for the production of liquid fuels Developments in Thermochemical Biomass Conversion 1997 Volume 1 5 

  54. 10.1002/9781119990840 Brown, R.C. (2011). Fast pyrolysis. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, John Wiley & Sons, Ltd. 

  55. Basu, P. (2010). Biomass Gasification and Pyrolysis: Practical Design and Theory, Academic Press. 

  56. Mohan Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review Energy Fuels 2006 10.1021/ef0502397 20 848 

  57. Goldstein Thermal Deterioration of Wood Wood Technology: Chemical Aspects 1977 Volume 43 57 

  58. Balonek, C.M. (2011). Autothermal Oxidative Pyrolysis of Biomass Feedstocks over Noble Metal Catalysts to Liquid Products. [Ph.D. Thesis, University of Minnesota]. 

  59. Jahirul Biofuels Production through Biomass Pyrolysis-A Technological Review Energies 2012 10.3390/en5124952 5 4952 

  60. Fang Introduction to Pyrolysis as a Thermo-Chemical Conversion Technology Production of Biofuels and Chemicals with Pyrolysis 2020 Volume 10 3 

  61. Uchimiya, S.M., Chang, S.X., and Bolan, N. (2016). Biochar. Biochar: Production, Characterization, and Applications, CRC Press. 

  62. Bridgwater An Overview of Fast Pyrolysis of Biomass Org. Geochem. 1999 10.1016/S0146-6380(99)00120-5 30 1479 

  63. Mazlan Characterizations of Bio-Char from Fast Pyrolysis of Meranti Wood Sawdust J. Phys. Conf. Ser. 2015 10.1088/1742-6596/622/1/012054 622 012054 

  64. Komarayati Manufacturing Activated Charcoal from Teakwood Sawdust (in Bahasa Indonesia) Bul. Penelit. Has. Hutan 1997 15 94 

  65. Ratnani Actived Carbon from Teak Wood, Jackfruit Wood, and Mango Wood Pyrolysis Process J. Phys. Conf. Ser. 2019 10.1088/1742-6596/1217/1/012055 1217 012055 

  66. Bardalai Characterisation of Pyrolysis Oil Derived from Teak Tree Saw Dust and Rice Husk J. Eng. Sci. Technol. 2018 13 242 

  67. Rahmat Generation of Wood-Waste Vinegar and Its Effectiveness as Plant Growth Regulator and Pest Insect Repellant BioResources 2014 10.15376/biores.9.4.6350-6360 9 6350 

  68. Lim, K.G., and Egashira, R. (2004). Pyrolysis and Characterization of the Products for Recycle of Rubberwood Residues. [Master’s Thesis, Tokyo Institute of Technology]. 

  69. Ratanapisit Preliminary Evaluation of Production and Characterization of Wood Vinegar from Rubberwood Songklanakarin J. Sci. Technol. 2009 31 343 

  70. Nurhayati Charcoal Production of Rubber Wood (Hevea brasilliensis) in Dome Kiln of S-93 Model (in Bahasa Indonesia) J. Penelit. Has. Hutan 1995 10.20886/jphh.1995.13.1.37-44 13 37 

  71. Wibowo Characteristics of Bio-Oil from Sengon (Paraserianthes falcataria L. Nielsen) Sawdust by Slow Pyrolysis Process (in Bahasa Indonesia) J. Penelit. Has. Hutan 2013 10.20886/jphh.2013.31.4.258-270 31 258 

  72. Hendrawan Effect of Carbonization Temperature Variations and Activator Agent Types on Activated Carbon Characteristics of Sengon Wood Waste (Paraserianthes falcataria (L.) Nielsen) IOP Conf. Ser. Earth Envrion. Sci. 2019 10.1088/1755-1315/239/1/012006 239 012006 

  73. Nugrahaningtyas Local Wood’s Bio-Oil Upgrading Using Non-Sulfided (Co, Mo)/USY Catalyst IOP Conf. Ser. Mater. Sci. Eng. 2019 10.1088/1757-899X/578/1/012012 578 012012 

  74. Mazlan Fast Pyrolysis of Rubber Wood Sawdust via a Fluidized Bed Pyrolyzer: The Effect of Fluidization Gas Velocity Sindh Univ. Res. J. (Sci. Ser.) 2016 48 9 

  75. Gupta Experimental Process Parameters Optimization and In-Depth Product Characterizations for Teak Sawdust Pyrolysis Waste Manag. 2019 10.1016/j.wasman.2019.02.035 87 499 

  76. Putra Production of Coal-Like Solid Fuel from Albizia chinensis Sawdust Via Wet Torrefaction Process J. Ecol. Eng. 2020 10.12911/22998993/123502 21 183 

  77. Fryda Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis Agriculture 2015 10.3390/agriculture5041076 5 1076 

  78. 10.1201/b18920 Ok, Y.S., Uchimiya, S.M., Chang, S.X., and Bolan, N. (2016). Definitions and Fundamentals of Biochar. Biochar: Production, Characterization, and Applications, CRC Press. Urbanization, Industrialization, and the Environment. 

  79. Lehmann, J., and Joseph, S. (2009). Biochar for Environmental Management: Science and Technology, Earthscan. 

  80. 10.3390/agriculture8100153 Suthar, R., Wang, C., Nunes, M., Chen, J., Sargent, S., Bucklin, R., and Gao, B. (2018). Bamboo Biochar Pyrolyzed at Low Temperature Improves Tomato Plant Growth and Fruit Quality. Agriculture, 8. 

  81. Biederman Biochar and Its Effects on Plant Productivity and Nutrient Cycling: A Meta-Analysis GCB Bioenergy 2013 10.1111/gcbb.12037 5 202 

  82. Sheng Biochar Alters Microbial Community and Carbon Sequestration Potential across Different Soil PH Sci. Total Environ. 2018 10.1016/j.scitotenv.2017.11.337 622-623 1391 

  83. 10.3390/agronomy9050225 Sánchez-Monedero, M.A., Cayuela, M.L., Sánchez-García, M., Vandecasteele, B., D’Hose, T., López, G., Martínez-Gaitán, C., Kuikman, P.J., Sinicco, T., and Mondini, C. (2019). Agronomic Evaluation of Biochar, Compost and Biochar-Blended Compost across Different Cropping Systems: Perspective from the European Project FERTIPLUS. Agronomy, 9. 

  84. 10.3390/agronomy6010013 Alotaibi, K., and Schoenau, J. (2016). Application of Two Bioenergy Byproducts with Contrasting Carbon Availability to a Prairie Soil: Three-Year Crop Response and Changes in Soil Biological and Chemical Properties. Agronomy, 6. 

  85. Chan Agronomic Values of Greenwaste Biochar as a Soil Amendment Soil Res. 2007 10.1071/SR07109 45 629 

  86. Ding Biochar to Improve Soil Fertility. A Review Agron. Sustain. Dev. 2016 10.1007/s13593-016-0372-z 36 36 

  87. Jain Highly Mesoporous Carbon from Teak Wood Sawdust as Prospective Electrode for the Construction of High Energy Li-Ion Capacitors Electrochim. Acta 2017 10.1016/j.electacta.2017.01.060 228 131 

  88. Antolini Graphene as a New Carbon Support for Low-Temperature Fuel Cell Catalysts Appl. Catal. B Environ. 2012 10.1016/j.apcatb.2012.04.022 123-124 52 

  89. Sudarsono High Performance Iron-Based Oxygen Reduction Catalyst Supported on Sengon Wood-Derived Reduced Graphene Oxide in Acidic Medium IOP Conf. Ser. Earth Environ. Sci. 2020 10.1088/1755-1315/463/1/012060 463 012060 

  90. Sudarsono Noble-free Oxygen Reduction Reaction Catalyst Supported on Sengon Wood (Paraserianthes falcataria L.) Derived Reduced Graphene Oxide for Fuel Cell Application Int. J. Energy Res. 2020 10.1002/er.5015 44 1761 

  91. Sudarsono Sengon Wood-Derived RGO Supported Fe-Based Electrocatalyst with Stabilized Graphitic N-Bond for Oxygen Reduction Reaction in Acidic Medium Int. J. Hydrogen Energy 2020 10.1016/j.ijhydene.2020.05.158 45 23237 

  92. Oasmaa Fuel Oil Quality of Biomass Pyrolysis Oils: State of the Art for the End Users Energy Fuels 1999 10.1021/ef980272b 13 914 

  93. Oasmaa Fast Pyrolysis Bio-Oils from Wood and Agricultural Residues Energy Fuels 2010 10.1021/ef901107f 24 1380 

  94. Parray Fuel Properties of Ethanol-Diesel Blends for Use as Engine Fuel Int. J. Sci. Res. 2015 4 2443 

  95. Zhang Review of Biomass Pyrolysis Oil Properties and Upgrading Research Energy Convers. Manag. 2007 10.1016/j.enconman.2006.05.010 48 87 

  96. Chiaramonti Power Generation Using Fast Pyrolysis Liquids from Biomass Renew. Sustain. Energy Rev. 2007 10.1016/j.rser.2005.07.008 11 1056 

  97. Oasmaa Pyrolysis Oil Combustion Tests in an Industrial Boiler Progress in Thermochemical Biomass Conversion 2001 10.1002/9780470694954.ch121 Volume 2 1468 

  98. 10.4271/2001-24-0041 Bertoli, C., Calabria, R., D’Alessio, J., Giacomo, N.D., Lazzaro, M., Massoli, P., and Moccia, V. (2001, January 23-27). Diesel Engines Fueled by Wood Pyrolysis Oil: Feasibility and Perspectives. Proceedings of the 5th International Conference Internal Combustion Engines, Naples, Italy. 

  99. Bridgwater Review of Fast Pyrolysis of Biomass and Product Upgrading Biomass Bioenergy 2012 10.1016/j.biombioe.2011.01.048 38 68 

  100. 10.1016/j.apenergy.2013.11.040 Lehto, J., Oasmaa, A., Solantausta, Y., Kytö, M., and Chiaramonti, D. (2013). Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-Oils, VTT. 

  101. Solantausta Wood-Pyrolysis Oil as Fuel in a Diesel-Power Plant Bioresour. Technol. 1993 10.1016/0960-8524(93)90071-I 46 177 

  102. Shihadeh Diesel Engine Combustion of Biomass Pyrolysis Oils Energy Fuels 2000 10.1021/ef990044x 14 260 

  103. Haryanto Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review Energy Fuels 2005 10.1021/ef0500538 19 2098 

  104. Iliopoulou Overview of Catalytic Upgrading of Biomass Pyrolysis Vapors toward the Production of Fuels and High-Value Chemicals Wires Energy Environ. 2019 10.1002/wene.322 8 e322 

  105. Leng Bio-Oil Upgrading by Emulsification/Microemulsification: A Review Energy 2018 10.1016/j.energy.2018.07.117 161 214 

  106. Chong Emulsification of Bio-Oil and Diesel Chem. Eng. Trans. 2017 56 1801 

  107. 10.3390/molecules24122250 Zhang, S., Yang, X., Zhang, H., Chu, C., Zheng, K., Ju, M., and Liu, L. (2019). Liquefaction of Biomass and Upgrading of Bio-Oil: A Review. Molecules, 24. 

  108. Paenpong Effect of Filter Media Size, Mass Flow Rate and Filtration Stage Number in a Moving-Bed Granular Filter on the Yield and Properties of Bio-Oil from Fast Pyrolysis of Biomass Bioresour. Technol. 2013 10.1016/j.biortech.2013.03.200 139 34 

  109. Krutof Upgrading of Biomass Sourced Pyrolysis Oil Review: Focus on Co-Pyrolysis and Vapour Upgrading during Pyrolysis Biomass Convers. Biorefin. 2018 10.1007/s13399-018-0326-6 8 775 

  110. Pidtasang Influence of Alcohol Addition on Properties of Bio-Oil Produced from Fast Pyrolysis of Eucalyptus Bark in a Free-Fall Reactor J. Ind. Eng. Chem. 2013 10.1016/j.jiec.2013.02.031 19 1851 

  111. Mei Effect of Methanol Addition on Properties and Aging Reaction Mechanism of Bio-Oil during Storage Fuel 2019 10.1016/j.fuel.2019.02.012 244 499 

  112. McVey Separation of BTX Chemicals from Biomass Pyrolysis Oils via Continuous Flash Distillation Biomass Convers. Biorefin. 2020 10.1007/s13399-019-00409-1 10 15 

  113. Vispute Production of Hydrogen, Alkanes and Polyols by Aqueous Phase Processing of Wood-Derived Pyrolysis Oils Green Chem. 2009 10.1039/b912522c 11 1433 

  114. Liao Overview of Bio-Oil Upgrading via Catalytic Cracking AMR 2013 10.4028/www.scientific.net/AMR.827.25 827 25 

  115. Kuoppala Catalytic Conversion of Biomass Pyrolysis Vapours with Zinc Oxide J. Anal. Appl. Pyrolysis 2000 10.1016/S0165-2370(99)00071-6 55 119 

  116. 10.5772/961 Dos Santos Bernardes, M.A. (2011). Pyrolysis Oil Stabilisation by Catalytic Hydrotreatment. Biofuel’s Engineering Process Technology, InTech. 

  117. Zhang Hydrotreatment of Bio-Oil over Ni-Based Catalyst Bioresour. Technol. 2013 10.1016/j.biortech.2012.07.119 127 306 

  118. Zhang Study on the Preparation of Biohydrocarbon Fuel by Catalytic Hydrogenation of Swida wilsoniana Pyrolysis Products Adv. Mater. Sci. Eng. 2020 10.1155/2020/3569125 2020 3569125 

  119. Li Hydrodeoxygenation of Lignin-Derived Bio-Oil Using Molecular Sieves Supported Metal Catalysts: A Critical Review Renew. Sustain. Energy Rev. 2017 10.1016/j.rser.2016.12.057 71 296 

  120. Sanna Hydrodeoxygenation of the Aqueous Fraction of Bio-Oil with Ru/C and Pt/C Catalysts Appl. Catal. B Environ. 2015 10.1016/j.apcatb.2014.10.013 165 446 

  121. Schmitt Hydrotreatment of Fast Pyrolysis Bio-Oil Fractions Over Nickel-Based Catalyst Top. Catal. 2018 10.1007/s11244-018-1009-z 61 1769 

  122. Wu Hydrogen Production via Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in a Two-Stage Fixed Bed Reactor System Fuel Process. Technol. 2008 10.1016/j.fuproc.2008.05.018 89 1306 

  123. Lan Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in Fixed Bed and Fluidized Bed Reactors Chem. Eng. Technol. 2010 10.1002/ceat.201000169 33 2021 

  124. Pan Hydrogen Production by Catalytic Steam Reforming of Bio-Oil, Naphtha and CH4 over C12A7-Mg Catalyst Chin. J. Chem. Phys. 2006 10.1360/cjcp2006.19(3).190.3 19 190 

  125. Pawar Comprehensive Review on Pyrolytic Oil Production, Upgrading and Its Utilization J. Mater. Cycles Waste Manag. 2020 10.1007/s10163-020-01063-w 22 1712 

  126. Yang Overview of Upgrading of Pyrolysis Oil of Biomass Energy Procedia 2014 10.1016/j.egypro.2014.11.1087 61 1306 

  127. Siedlecki Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels-A Review Energies 2011 10.3390/en4030389 4 389 

  128. Baratieri The Use of Biomass Syngas in IC Engines and CCGT Plants: A Comparative Analysis Appl. Therm. Eng. 2009 10.1016/j.applthermaleng.2009.05.003 29 3309 

  129. 10.1002/9781118991978 Yan, J. (2015). Combined Heat and Power (CHP) Generation Using Gas Engines Fueled with Pyrolysis Gases. Handbook of Clean Energy Systems, John Wiley & Sons, Ltd. 

  130. Hagos Trends of Syngas as a Fuel in Internal Combustion Engines Adv. Mech. Eng. 2014 10.1155/2014/401587 6 401587 

  131. Hossain Pyrolysis Liquids and Gases as Alternative Fuels in Internal Combustion Engines-A Review Renew. Sustain. Energy Rev. 2013 10.1016/j.rser.2012.12.031 21 165 

  132. Abidin Potential Assessment and Development Concession Charcoal Wood in the Ranggang Luar Village, Takisung Sub District, Tanah Laut, South Kalimantan (in Bahasa Indonesia) J. Hutan Trop. 2018 10.20527/jht.v6i2.5398 6 108 

  133. Sulistyo, J., Marsoem, S.N., Kholik, A., and Wibowo, M.N. (2017). Proses Pengarangan Dari Tungku/Dapur Pengarang Konvensional Dan Permanen Di Wonosari, Gunungkidul. Proceedings of the Proseding Seminar Nasional Masyarakat Peneliti Kayu Indonesia XX, MAPEKI (Masyarakat Peneliti Kayu Indonesia). 

  134. Tirono Efek Suhu Pada Proses Pengarangan Terhadap Nilai Kalor Arang Tempurung Kelapa (Coconut Shell Carchoal) J. Neutrino 2011 3 143 

  135. Salim The Quality and Characteristics of Teak (Tectona grandis) Charcoal Made by Mixed Carbonisation in Drum Kiln (in Bahasa Indonesia) J. Ris. Ind. Has. Hutan 2016 10.24111/jrihh.v8i2.2113 8 53 

  136. Iskandar, H., and Santosa, K.D. (2005). Panduan Singkat Cara Pembuatan Arang Kayu Alternatif Pemanfaatan Limbah Kayu Oleh Masyarakat, CIFOR (Center for International Forestry Research). 

  137. Rochmayanto The Potency of Stump of Acacia crassicarpa and Economic Utilization as the Raw Materials Charcoal Resources J. Penelit. Hutan Tanam. 2012 10.20886/jpht.2012.9.1.9-18 9 9 

  138. Yandri Consumer Preferences for Coconut Shell Charcoal in Suburban Indonesia Int. Res. J. Bus. Stud. 2013 10.21632/irjbs.6.2.121-132 VI 121 

  139. World Integrated Trade Solution, (WITS) (2021, February 11). Indonesia Wood; Charcoal (Including Shell or Nut Charcoal), Whether or Not Agglomerated Exports by Country in 2019. Available online: https://wits.worldbank.org/trade/comtrade/en/country/IDN/year/2019/tradeflow/Exports/partner/ALL/product/440200. 

  140. Zion Market Research (2021, February 24). Global Biochar Market Size Expected to Reach $585.0 Million by 2020. Available online: http://www.globenewswire.com/news-release/2017/06/06/1008630/0/en/Global-Biochar-Market-Size-Expected-to-Reach-585-0-Million-by-2020.html. 

  141. Acumen Research and Consulting (2021, February 24). USD 15 Mn Biochar Market Size Expected to Reach between 2014-2023 Says Acumen Research and Consulting Experts. Available online: http://www.globenewswire.com/news-release/2017/11/29/1210264/0/en/USD-15-Mn-Biochar-Market-Size-Expected-to-Reach-between-2014-2023-Says-Acumen-Research-and-Consulting-Experts.html. 

  142. IMARC Group (2021, February 24). Biochar Market Size, Share, Price Trends and Forecast 2020-2025. Available online: https://www.imarcgroup.com/biochar-market. 

  143. (2021, February 24). Grand View Research Biochar Market Size Worth $3.1 Billion By 2025, CAGR: 13.2%. Available online: https://www.grandviewresearch.com/press-release/global-biochar-market. 

  144. Chen Past, Present, and Future of Biochar Biochar 2019 10.1007/s42773-019-00008-3 1 75 

  145. 10.1596/978-0-8213-9525-7 Scholz, S.B., Sembres, T., Roberts, K., Whitman, T., Wilson, K., and Lehmann, J. (2014). Biochar Systems for Smallholders in Developing Countries: Leveraging Current Knowledge and Exploring Future Potential for Climate-Smart Agriculture, The World Bank. 

  146. Wu Biochar Is Superior to Lime in Improving Acidic Soil Properties and Fruit Quality of Satsuma Mandarin Sci. Total Environ. 2020 10.1016/j.scitotenv.2020.136722 714 136722 

  147. 10.1016/B978-0-12-811729-3.00005-4 Ippolito, J.A., Cui, L., Novak, J.M., and Johnson, M.G. (2019). Biochar for Mine-Land Reclamation. Biochar from Biomass and Waste, Elsevier. 

  148. Liu, J. (2015). The Application of Biochar as a Soil Amendment in Land Reclamation. [Master’s Thesis, University of Alberta]. 

  149. Nursyamsi Effect of Biochar on Peat Soil Fertility and NPK Uptake by Corn Agrivita J. Agric. Sci. 2019 41 64 

  150. Norwegian Geotechnical Institute (2014). Biochar on Acidic Agricultural Lands in Indonesia and Malaysia. 

  151. Berek The Potential of Biochar as an Acid Soil Amendment to Support Indonesian Food and Energy Security-A Review Pertanika J. Trop. Agric. Sci. 2019 42 745 

  152. Juhrian The Effect of Biochar, Lime, and Compost on The Properties of Acid Sulphate Soil J. Wetl. Environ. Manag. 2020 8 129 

  153. Sukarman Tin Mining Process and Its Effects on Soils in Bangka Belitung Islands Province, Indonesia Sains Tanah J. Soil Sci. Agroclimatol. 2020 17 180 

  154. President of The Republic of Indonesia (2014). Regulation of The Government of Indonesia No.12/2014 on the Types and Rates of Non-Tax State Revenues Applicable at the Indonesia Ministry of Forestry. 

  155. Jirka, S., and Tomlinson, T. (2015). State of the Biochar Industry 2014: A Survey of Commercial Activity in the Biochar Sector, International Biochar Initiative (IBI). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로