최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Machine vision and applications, v.32 no.6, 2021년, pp.120 -
Song, Kyungmin , Choi, Han-Soo , Kang, Myungjoo
초록이 없습니다.
10.1108/02602281311299635 Bogue, R.: Sensors for fire detection. Sensor Rev. 3(2), 99-103 (2013)
Thomas K.: Fire detection with temperature sensor arrays. In: Proceedings IEEE 34th Annual 2000 International Carnahan Conference on Security Technology (Cat. No. 00CH37083)
Fire Saf. J. Shin-Juh Chen 42 8 507 2007 10.1016/j.firesaf.2007.01.006 Chen, Shin-Juh., Hovde, David C., Peterson, Kristen A., Marshall, André W.: Fire detection using smoke and gas sensors. Fire Saf. J. 42(8), 507-515 (2007)
Fire Technol. Xuanbing Qiu 54 5 1249 2018 10.1007/s10694-018-0727-x Qiu, Xuanbing, Xi, Tingyu, Sun, Dongyuan, Zhang, Enhua, Li, Chuanliang, Peng, Ying, Wei, Jilin, Wang, Gao: Fire detection algorithm combined with image processing and flame emission spectroscopy. Fire Technol. 54(5), 1249-1263 (2018)
IEEE Trans. Ind. Informatics M Khan 15 5 3113 2019 10.1109/TII.2019.2897594 Khan, M., Salman, K., Mohamed, E., Syed, H.A., Sung, W.B.: Efficient fire detection for uncertain surveillance environment. IEEE Trans. Ind. Informatics 15(5), 3113-3122 (2019)
Fire Technol. Gaohua Lin 55 5 1827 2019 10.1007/s10694-019-00832-w Lin, Gaohua, Zhang, Yongming, Gao, Xu., Zhang, Qixing: Smoke detection on video sequences using 3d convolutional neural networks. Fire Technol. 55(5), 1827-1847 (2019)
Süleyman, A., Uğur, G., B Uğur, T., Enis Çetin, A.: Deep convolutional generative adversarial networks based flame detection in video. arXiv:1902.01824 (2019)
10.1016/j.comcom.2019.10.007 Sudhakar, S., Varadarajan Vijayakumar, C., Sathiya Kumar, V., Priya., Logesh, R., Subramaniyaswamy, V, : Unmanned aerial vehicle (uav) based forest fire detection and monitoring for reducing false alarms in forest-fires. Comput. Commun. 149, 1-16 (2020)
Viktor, T., Romana, C.-H., Eva, T.: Forest fires detection in digital images based on color features. Int. J. Educ. Learn. Syst., 2, 66-70 (2017)
10.1007/978-3-319-10602-1_48 Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Lawrence, C., Zitnick. (eds.): In: Microsoft coco: Common objects in context, pp. 740-755. Springer (2014)
Yuval N., Iacopo, M., Anh Tran, T., Tal, H., Gerard, M.: On face segmentation, face swapping, and face perception. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 98-105. IEEE (2018)
Remote Sens. Lett. Ye Li 10 4 381 2019 10.1080/2150704X.2018.1557791 Li, Ye., Lele, Xu., Rao, Jun, Guo, Lili, Yan, Zhen, Jin, Shan: A y-net deep learning method for road segmentation using high-resolution visible remote sensing images. Remote Sens. Lett. 10(4), 381-390 (2019)
ISPRS J. Photogramm. Remote Sens. W Michael 150 59 2019 10.1016/j.isprsjprs.2019.02.006 Michael, W., Thomas, S., Xiao, X.Z., Matthias, W., Hannes, T.: Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 150, 59-69 (2019)
10.1109/TMM.2020.2967645 Yan, C., Shao, B., Zhao, H., Ning, R., Zhang, Y., Xu, F.: 3d room layout estimation from a single rgb image. IEEE Trans. Multimed. 22(11), 3014-3024 (2020)
Tran, M.Q., David, G.C.H, Won-Ki, J.: Fusionnet: a deep fully residual convolutional neural network for image segmentation in connectomics. arXiv:1612.05360 (2016)
Med. Image Anal. Michal Drozdzal 44 1 2018 10.1016/j.media.2017.11.005 Drozdzal, Michal, Chartrand, Gabriel, Vorontsov, Eugene, Shakeri, Mahsa, Di Jorio, Lisa, Tang, An., Romero, Adriana, Bengio, Yoshua, Pal, Chris, Kadoury, Samuel: Learning normalized inputs for iterative estimation in medical image segmentation. Med. Image Anal. 44, 1-13 (2018)
Cazzolato, M.T., Avalhais, L.P.S., Chino, D.Y.T., Ramos, J.S., de Souza, J.A., Rodrigues-Jr, Jose, F., Traina, A.J.: Fismo: a compilation of datasets from emergency situations for fire and smoke analysis. Proc. Satell. events (2017)
Fire Saf. J. T Tom 92 188 2017 10.1016/j.firesaf.2017.06.012 Tom, T., Lucile, R., Antoine, C., Turgay, C., Moulay Akhloufi, A.: An evolving image dataset for processing and analysis. Computer vision for wildfire research. Fire Saf. J. 92, 188-194 (2017)
Fire Saf. J. Turgay Celik 44 2 147 2009 10.1016/j.firesaf.2008.05.005 Celik, Turgay, Demirel, Hasan: Fire detection in video sequences using a generic color model. Fire Saf. J. 44(2), 147-158 (2009)
Neurocomputing Feiniu Yuan 357 248 2019 10.1016/j.neucom.2019.05.011 Yuan, Feiniu, Zhang, Lin, Xia, Xue, Wan, Boyang, Huang, Qinghua, Li, Xuelong: Deep smoke segmentation. Neurocomputing 357, 248-260 (2019)
Forrest, N.I., Song, H., Matthew, W.M., Khalid, A., William, J.D., Kurt, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 0.5 mb model size. arXiv:1602.07360 (2016)
Andrew, G.H., Menglong, Z., Bo, C., Dmitry, K., Weijun, W., Tobias, W., Marco, A., Hartwig, A.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 (2017)
10.1007/978-3-319-10590-1_53 Zeiler, M.D., Fergus, R.: In: Visualizing and understanding convolutional networks, pp. 818-833. Springer (2014)
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.