$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Flexible high-energy-density lithium-sulfur batteries using nanocarbon-embedded fibrous sulfur cathodes and membrane separators 원문보기

NPG Asia Materials, v.13 no.1, 2021년, pp.30 -   

Park, Jun-Woo ,  Jo, Seong-Chan ,  Kim, Min-Ju ,  Choi, Ik-Hyeon ,  Kim, Byung Gon ,  Lee, You-Jin ,  Choi, Hae-Young ,  Kang, Sung ,  Kim, TaeYoung ,  Baeg, Kang-Jun

Abstract AI-Helper 아이콘AI-Helper

AbstractTo obtain soft electronics, it is essential to develop high-performance and mechanically flexible energy storage at the industry level. Herein, we report flexible high-energy-density lithium-sulfur (Li-S) batteries based on all-fibrous sulfur cathodes and separators. To implement free-standi...

참고문헌 (45)

  1. Front. Physiol. JM Peake 9 1 2018 10.3389/fphys.2018.00743 Peake, J. M., Kerr, G. & Sullivan, J. P. A critical review of consumer wearables, mobile applications, and equipment for providing biofeedback, monitoring stress, and sleep in physically active populations. Front. Physiol. 9, 1-19 (2018). 

  2. Sens. (Basel) G Aroganam 19 1983 2019 10.3390/s19091983 Aroganam, G., Manivannan, N. & Harrison, D. Review on wearable technology sensors used in consumer sport applications. Sens. (Basel) 19, 1983 (2019). 

  3. Batteries Supercaps W-J Song 2 181 2019 10.1002/batt.201800140 Song, W.-J. et al. Recent progress in stretchable batteries for wearable electronics. Batteries Supercaps 2, 181-199 (2019). 

  4. Energy Environ. Sci. J-H Kim 12 177 2019 10.1039/C8EE01879K Kim, J.-H. et al. Nanomat Li-S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ. Sci. 12, 177-186 (2019). 

  5. Adv. Mater. G Zhou 27 641 2015 10.1002/adma.201404210 Zhou, G. et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 27, 641-647 (2015). 

  6. Nat. Mater. X Ji 8 500 2009 10.1038/nmat2460 Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500-506 (2009). 

  7. J. Phys. Chem. C. J-W Park 117 20531 2013 10.1021/jp408037e Park, J.-W., Ueno, K., Tachikawa, N., Dokko, K. & Watanabe, M. ionic liquid electrolytes for lithium-sulfur batteries. J. Phys. Chem. C. 117, 20531-20541 (2013). 

  8. Adv. Mater. K-J Baeg 25 4210 2013 10.1002/adma.201205361 Baeg, K.-J., Caironi, M. & Noh, Y.-Y. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Adv. Mater. 25, 4210-4244 (2013). 

  9. Adv. Funct. Mater. JH Koo 28 1801834 2018 10.1002/adfm.201801834 Koo, J. H., Kim, D. C., Shim, H. J., Kim, T.-H. & Kim, D.-H. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv. Funct. Mater. 28, 1801834 (2018). 

  10. Energy Storage Mater. L Zeng 23 434 2019 10.1016/j.ensm.2019.04.019 Zeng, L., Qiu, L. & Cheng, H.-M. Towards the practical use of flexible lithium ion batteries. Energy Storage Mater. 23, 434-438 (2019). 

  11. Chem. Rev. A Manthiram 114 11751 2014 10.1021/cr500062v Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. & Su, Y.-S. Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751-11787 (2014). 

  12. Adv. Mater. W Li 32 2002718 2020 10.1002/adma.202002718 Li, W., Lee, S. & Manthiram, A. High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 32, 2002718 (2020). 

  13. J. Phys. Chem. C. J-W Park 117 4431 2013 10.1021/jp400153m Park, J.-W. et al. Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium-sulfur batteries. J. Phys. Chem. C. 117, 4431-4440 (2013). 

  14. J. Phys. Chem. C. K Ueno 117 20509 2013 10.1021/jp407158y Ueno, K. et al. Anionic effects on solvate ionic liquid electrolytes in rechargeable lithium-sulfur batteries. J. Phys. Chem. C. 117, 20509-20516 (2013). 

  15. J. Phys. Chem. C. C Zhang 118 17362 2014 10.1021/jp504099q Zhang, C. et al. Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids, part 2: importance of solvate-structure stability for electrolytes of lithium batteries. J. Phys. Chem. C. 118, 17362-17373 (2014). 

  16. Chem. Commun. N Tachikawa 47 8157 2011 10.1039/c1cc12415c Tachikawa, N. et al. Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes. Chem. Commun. 47, 8157-8159 (2011). 

  17. Nanoscale W Kang 8 16541 2016 10.1039/C6NR04923K Kang, W. et al. A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale 8, 16541-16588 (2016). 

  18. J. Electrochem. Soc. K Dokko 160 A1304 2013 10.1149/2.111308jes Dokko, K. et al. Solvate ionic liquid electrolyte for Li-S batteries. J. Electrochem. Soc. 160, A1304-A1310 (2013). 

  19. Energy Environ. Sci. L Li 7 2101 2014 10.1039/c4ee00318g Li, L., Wu, Z., Yuan, S. & Zhang, X.-B. Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7, 2101-2122 (2014). 

  20. Nano Lett. K-H Choi 14 5677 2014 10.1021/nl5024029 Choi, K.-H. et al. Heterolayered, one-dimensional nanobuilding block mat batteries. Nano Lett. 14, 5677-5686 (2014). 

  21. J. Mater. Chem. A S Leijonmarck 1 4671 2013 10.1039/c3ta01532g Leijonmarck, S., Cornell, A., Lindbergh, G. & Wågberg, L. Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J. Mater. Chem. A 1, 4671-4677 (2013). 

  22. Adv. Energy Mater. M Hagen 5 1401986 2015 10.1002/aenm.201401986 Hagen, M. et al. Lithium-sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 5, 1401986 (2015). 

  23. Energy Environ. Sci. M Wild 8 3477 2015 10.1039/C5EE01388G Wild, M. et al. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8, 3477-3494 (2015). 

  24. Adv. Energy Mater. C Zu 4 1400897 2014 10.1002/aenm.201400897 Zu, C. & Manthiram, A. High-performance Li/dissolved polysulfide batteries with an advanced cathode structure and high sulfur content. Adv. Energy Mater. 4, 1400897 (2014). 

  25. Adv. Mater. R Elazari 23 5641 2011 10.1002/adma.201103274 Elazari, R., Salitra, G., Garsuch, A., Panchenko, A. & Aurbach, D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater. 23, 5641-5644 (2011). 

  26. J. Power Sour. M Hagen 224 260 2013 10.1016/j.jpowsour.2012.10.004 Hagen, M. et al. Development and costs calculation of lithium-sulfur cells with high sulfur load and binder free electrodes. J. Power Sour. 224, 260-268 (2013). 

  27. J. Mater. Chem. A S Thieme 1 9225 2013 10.1039/c3ta10641a Thieme, S. et al. High capacity micro-mesoporous carbon-sulfur nanocomposite cathodes with enhanced cycling stability prepared by a solvent-free procedure. J. Mater. Chem. A 1, 9225-9234 (2013). 

  28. Nano Lett. J-H Kim 16 5533 2016 10.1021/acs.nanolett.6b02069 Kim, J.-H. et al. Functionalized nanocellulose-integrated heterolayered nanomats toward smart battery separators. Nano Lett. 16, 5533-5541 (2016). 

  29. Adv. Mater. P Xiao 29 1703324 2017 10.1002/adma.201703324 Xiao, P., Bu, F., Yang, G., Zhang, Y. & Xu, Y. Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices. Adv. Mater. 29, 1703324 (2017). 

  30. Adv. Mater. X Wang 26 4763 2014 10.1002/adma.201400910 Wang, X. et al. Flexible energy-storage devices: design consideration and recent progress. Adv. Mater. 26, 4763-4782 (2014). 

  31. J. Am. Chem. Soc. G Liu 134 9070 2012 10.1021/ja302897b Liu, G., Niu, P., Yin, L. & Cheng, H.-M. α-sulfur crystals as a visible-light-active photocatalyst. J. Am. Chem. Soc. 134, 9070-9073 (2012). 

  32. Adv. Funct. Mater. Z Yuan 24 6105 2014 10.1002/adfm.201401501 Yuan, Z. et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 24, 6105-6112 (2014). 

  33. Adv. Funct. Mater. H-S Kang 26 1225 2016 10.1002/adfm.201504262 Kang, H.-S. & Sun, Y.-K. Freestanding bilayer carbon-sulfur cathode with function of entrapping polysulfide for high performance Li-S batteries. Adv. Funct. Mater. 26, 1225-1232 (2016). 

  34. Sci. Rep. M-J Kim 10 2020 10.1038/s41598-020-68885-4 Kim, M.-J. et al. Facile fabrication of solution-processed solid-electrolytes for high-energy-density all-solid-state-batteries by enhanced interfacial contact. Sci. Rep. 10, 11923 (2020). 

  35. Adv. Energy Mater. M Yu 7 1700018 2017 10.1002/aenm.201700018 Yu, M., Wang, Z., Wang, Y., Dong, Y. & Qiu, J. Freestanding flexible Li2S paper electrode with high mass and capacity loading for high-energy Li-S batteries. Adv. Energy Mater. 7, 1700018 (2017). 

  36. Nat. Energy P Albertus 3 16 2018 10.1038/s41560-017-0047-2 Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16-21 (2018). 

  37. Nat. Commun. Y Mao 8 2017 10.1038/ncomms14628 Mao, Y. et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat. Commun. 8, 14628 (2017). 

  38. J. Mater. Chem. A W Ahn 3 9461 2015 10.1039/C5TA01378J Ahn, W. et al. Interaction mechanism between a functionalized protective layer and dissolved polysulfide for extended cycle life of lithium sulfur batteries. J. Mater. Chem. A 3, 9461-9467 (2015). 

  39. Nano Energy Z Wang 59 390 2019 10.1016/j.nanoen.2019.02.029 Wang, Z. et al. Constructing metal-free and cost-effective multifunctional separator for high-performance lithium-sulfur batteries. Nano Energy 59, 390-398 (2019). 

  40. J. Power Sour. J Scheers 255 204 2014 10.1016/j.jpowsour.2014.01.023 Scheers, J., Fantini, S. & Johansson, P. A review of electrolytes for lithium-sulphur batteries. J. Power Sour. 255, 204-218 (2014). 

  41. ACS Nano S Kang 14 3660 2020 10.1021/acsnano.0c00187 Kang, S. et al. Stretchable lithium-ion battery based on re-entrant micro-honeycomb electrodes and cross-linked gel electrolyte. ACS Nano 14, 3660-3668 (2020). 

  42. Energy Environ. Sci. ZW Seh 7 672 2014 10.1039/c3ee43395a Seh, Z. W. et al. Facile synthesis of Li2S-polypyrrole composite structures for high-performance Li2S cathodes. Energy Environ. Sci. 7, 672-676 (2014). 

  43. Nat. Commun. X Liang 6 2015 10.1038/ncomms6682 Liang, X. et al. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 5682 (2015). 

  44. Adv. Mater. G Hu 28 1603 2016 10.1002/adma.201504765 Hu, G. et al. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 28, 1603-1609 (2016). 

  45. Adv. Mater. YH Kwon 24 5192 2012 10.1002/adma.201202196 Kwon, Y. H. et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 24, 5192-5197 (2012). 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로