$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Photovoltaic Device Application of a Hydroquinone-Modified Conductive Polymer and Dual-Functional Molecular Si Surface Passivation Technology 원문보기

Polymers, v.14 no.3, 2022년, pp.478 -   

Park, Na Yeon (Department of Metallurgical Engineering, Dong-A University, Busan 604-714, Korea) ,  Jeong, Gwan Seung (nayeon2385@gmail.com (N.Y.P.)) ,  Yu, Young-Jin (wjdrhkstmd12@gmail.com (G.S.J.)) ,  Jung, Yoon-Chae (tq6284@naver.com (Y.-J.Y.)) ,  Lee, Jin Hee (dbsco0306@naver.com (Y.-C.J.)) ,  Seo, Jung Hwa (Department of Metallurgical Engineering, Dong-A University, Busan 604-714, Korea) ,  Choi, Jea-Young (nayeon2385@gmail.com (N.Y.P.))

Abstract AI-Helper 아이콘AI-Helper

In the last decades, the conductive polymer PEDOT:PSS has been introduced in Si-based hybrid solar cells, gaining noticeable research interest and being considered a promising candidate for next generation solar cells which can achieve both of low manufacturing cost and high power conversion efficie...

주제어

참고문헌 (71)

  1. 1. Wojciechowski K. Forgács D. Rivera T. Industrial opportunities and challenges for perovskite photovoltaic technology Solar RRL 2019 3 1900144 10.1002/solr.201900144 

  2. 2. Sampaio P.G.V. González M.O.A. Photovoltaic solar energy: Conceptual framework Renew. Sustain. Energy Rev. 2017 74 590 601 10.1016/j.rser.2017.02.081 

  3. 3. Nazeeruddin M.K. Twenty-five years of low-cost solar cells Nature 2016 538 463 464 10.1038/538463a 27786213 

  4. 4. Hermle M. Feldmann F. Bivour M. Goldschmidt J.C. Glunz S.W. Passivating contacts and tandem concepts: Approaches for the highest silicon-based solar cell efficiencies Appl. Phys. Rev. 2020 7 021305 10.1063/1.5139202 

  5. 5. Wolden C.A. Kurtin J. Baxter J.B. Repins I. Shaheen S.E. Torvik J.T. Rockett A.A. Fthenakis V.M. Aydil E.S. Photovoltaic manufacturing: Present status, future prospects, and research needs J. Vac. Sci. Technol. A Vac. Surf. Films 2011 29 030801 10.1116/1.3569757 

  6. 6. Service R.F. Can the Upstarts Top Silicon? Science 2008 319 718 720 10.1126/science.319.5864.718 18258874 

  7. 7. Chen D. Chen Y. Wang Z. Gong J. Liu C. Zou Y. He Y. Wang Y. Yuan L. Lin W. 24.58% total area efficiency of screen-printed, large area industrial silicon solar cells with the tunnel oxide passivated contacts (i-TOPCon) design Sol. Energy Mater. Sol. Cells 2020 206 110258 10.1016/j.solmat.2019.110258 

  8. 8. Li M. Dai Y. Ma W. Yang B. Chu Q. Review of new technology for preparing crystalline Silicon solar cell materials by metallurgical method Earth and Environmental Science, Proceedings of the 3rd International Conference on Energy, Environment and Materials Science (EEMS 2017) Singapore 28–30 July 2017 IOP Conference Series IOP Publishing Bristol, UK 2017 

  9. 9. Srivastava S.K. Kumar D. Sharma M. Kumar R. Singh P.K. Silver catalyzed nano-texturing of silicon surfaces for solar cell applications Sol. Energy Mater. Sol. Cells 2012 100 33 38 10.1016/j.solmat.2011.05.003 

  10. 10. Srivastava S.K. Kumar D. Singh P.K. Kumar V. Silicon nanowire arrays based “black silicon” solar cells Proceedings of the 2009 34th IEEE Photovoltaic Specialists Conference (PVSC) Philadelphia, PA, USA 7–12 June 2009 IEEE Piscataway, NJ, USA 2009 

  11. 11. Lee Y.-T. Lin F.-R. Chen C.-H. Pei Z. A 14.7% Organic/silicon nanoholes hybrid solar cell via interfacial engineering by solution-processed inorganic conformal layer ACS Appl. Mater. Interfaces 2016 8 34537 34545 10.1021/acsami.6b10741 27998134 

  12. 12. Yu X. Shen X. Mu X. Zhang J. Sun B. Zeng L. Yang L. Wu Y. He H. Yang D. High efficiency organic/silicon-nanowire hybrid solar cells: Significance of strong inversion layer Sci. Rep. 2015 5 17371 10.1038/srep17371 26610848 

  13. 13. Yu P. Tsai C.-Y. Chang J.-K. Lai C.-C. Chen P.-H. Lai Y.-C. Tsai P.-T. Li M.-C. Pan H.-T. Huang Y.-Y. 13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering ACS Nano 2013 7 10780 10787 10.1021/nn403982b 24224917 

  14. 14. Tune D.D. Flavel B.S. Quinton J.S. Ellis A.V. Shapter J.G. Single-Walled Carbon Nanotube/Polyaniline/n-Silicon Solar Cells: Fabrication, Characterization, and Performance Measurements ChemSusChem 2013 6 320 327 10.1002/cssc.201200600 23322677 

  15. 15. Williams E.L. Jabbour G.E. Wang Q. Shaheen S.E. Ginley D.S. Schiff E.A. Conducting polymer and hydrogenated amorphous silicon hybrid solar cells Appl. Phys. Lett. 2005 87 223504 10.1063/1.2136409 

  16. 16. Baek S.-W. Jun S. Kim B. Proppe A.H. Ouellette O. Voznyy O. Kim. C. Kim. J. Walters G. Song J.H. Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules Nat. Energy 2019 4 969 976 10.1038/s41560-019-0492-1 

  17. 17. Lim N. Cho N. Paek S. Kim C. Lee J.K. Ko J. High-performance organic solar cells with efficient semiconducting small molecules containing an electron-rich benzodithiophene derivative Chem. Mater. 2014 26 2283 2288 10.1021/cm5004092 

  18. 18. Troshin P.A. Hoppe. H. Renz J. Egginger M. Mayorova J.Y. Goryachev A.E. Peregudov A.S. Lyubovskaya R.N. Gobsch G. Sariciftci N.S. Material solubility-photovoltaic performance relationship in the design of novel fullerene derivatives for bulk heterojunction solar cells Adv. Funct. Mater. 2009 19 779 788 10.1002/adfm.200801189 

  19. 19. Umeyama T. Imahori H. Isomer effects of fullerene derivatives on organic photovoltaics and perovskite solar cells Acc. Chem. Res. 2019 52 2046 2055 10.1021/acs.accounts.9b00159 31318521 

  20. 20. Huang D. Goh T. Kong J. Zheng Y. Zhao S. Xu Z. Taylor A.D. Perovskite solar cells with a DMSO-treated PEDOT: PSS hole transport layer exhibit higher photovoltaic performance and enhanced durability Nanoscale 2017 9 4236 4243 10.1039/C6NR08375G 28291270 

  21. 21. Pietsch M. Bashouti M.Y. Christiansen S. The role of hole transport in hybrid inorganic/organic silicon/poly (3, 4-ethylenedioxy-thiophene): Poly (styrenesulfonate) heterojunction solar cells J. Phys. Chem. C 2013 117 9049 9055 10.1021/jp308349f 

  22. 22. Thomas J.P. Leung K.T. Mixed co-solvent engineering of PEDOT: PSS to enhance its conductivity and hybrid solar cell properties J. Mater. Chem. A 2016 4 17537 17542 10.1039/C6TA07410C 

  23. 23. Reza K.M. Gurung A. Bahrami B. Mabrouk S. Elbohy H. Pathak R. Chen K. Chowdhury A.H. Rahman M.T. Letourneau S. Tailored PEDOT: PSS hole transport layer for higher performance in perovskite solar cells: Enhancement of electrical and optical properties with improved morphology J. Energy Chem. 2020 44 41 50 10.1016/j.jechem.2019.09.014 

  24. 24. Kim Y.H. Sachse C. Machala M.L. May C. Müller-Meskamp L. Leo K. Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells Adv. Funct. Mater. 2011 21 1076 1081 10.1002/adfm.201002290 

  25. 25. Zhu Y. Song T. Zhang F. Lee S.-T. Sun B. Efficient organic-inorganic hybrid Schottky solar cell: The role of built-in potential Appl. Phys. Lett. 2013 102 113504 10.1063/1.4796112 

  26. 26. Snaith H.J. Kenrick H. Chiesa M. Friend R.H. Morphological and electronic consequences of modifications to the polymer anode ‘PEDOT: PSS’ Polymer 2005 46 2573 2578 10.1016/j.polymer.2005.01.077 

  27. 27. Huang J. Miller P.F. de Mello J.C. de Mello A.J. Bradley D.D.C. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films Synth. Met. 2003 139 569 572 10.1016/S0379-6779(03)00280-7 

  28. 28. Friedel B. Keivanidis P.E. Brenner T.J.K. Abrusci A. McNeill C.R. Friend R.H. Greenham N.C. Effects of layer thickness and annealing of PEDOT: PSS layers in organic photodetectors Macromolecules 2009 42 6741 6747 10.1021/ma901182u 

  29. 29. Song C. Zhong Z. Hu Z. Luo Y. Wang L. Wang J. Cao Y. The effect of solvent treatment on the buried PEDOT: PSS layer Org. Electron. 2017 43 9 14 10.1016/j.orgel.2016.12.057 

  30. 30. Zhang X. Wu J. Wang J. Zhang J. Yang Q. Fu Y. Xie Z. Highly conductive PEDOT: PSS transparent electrode prepared by a post-spin-rinsing method for efficient ITO-free polymer solar cells Sol. Energy Mater. Sol. Cells 2016 144 143 149 10.1016/j.solmat.2015.08.039 

  31. 31. Lang U. Müller E. Naujoks N. Dual J. Microscopical investigations of PEDOT: PSS thin films Adv. Funct. Mater. 2009 19 1215 1220 10.1002/adfm.200801258 

  32. 32. Nardes A.M. Kemerink M. Janssen R.A.J. Bastiaansen J.A.M. Kiggen N.M.M. Langeveld B.M.W. Van Breemen A.J.J.M. De Kok M.M. Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films Adv. Mater. 2007 19 1196 1200 10.1002/adma.200602575 

  33. 33. Yan F. Parrott E.P.J. Ung B.S.-Y. Pickwell-MacPherson E. Solvent doping of PEDOT/PSS: Effect on terahertz optoelectronic properties and utilization in terahertz devices J. Phys. Chem. C 2015 119 6813 6818 10.1021/acs.jpcc.5b00465 

  34. 34. Nevrela J. Micjan M. Novota M. Kovacova S. Pavuk M. Juhasz P. Kovac J. Jr. Jakabovic J. Weis M. Secondary doping in poly (3, 4-ethylenedioxythiophene): Poly (4-styrenesulfonate) thin films J. Polym. Sci. Part B Polym. Phys. 2015 53 1139 1146 10.1002/polb.23754 

  35. 35. Chou T.-R. Chen S.-H. Chiang Y.-T. Lin Y.-T. Chao C.-Y. Highly conductive PEDOT: PSS films by post-treatment with dimethyl sulfoxide for ITO-free liquid crystal display J. Mater. Chem. C 2015 3 3760 3766 10.1039/C5TC00276A 

  36. 36. McCarthy J.E. Hanley C.A. Brennan L.J. Lambertini V.G. Gun'ko Y.K. Fabrication of highly transparent and conducting PEDOT: PSS films using a formic acid treatment J. Mater. Chem. C 2014 2 764 770 10.1039/C3TC31951B 

  37. 37. Ouyang J. “Secondary doping” methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices Displays 2013 34 423 436 10.1016/j.displa.2013.08.007 

  38. 38. Yin L. Zhao Z. Jiang F. Li Z. Xiong S. Zhou Y. PEDOT: PSS top electrode prepared by transfer lamination using plastic wrap as the transfer medium for organic solar cells Org. Electron. 2014 15 2593 2598 10.1016/j.orgel.2014.07.028 

  39. 39. Lee J.J. Lee S.H. Kim F.S. Choi H.H. Kim J.H. Simultaneous enhancement of the efficiency and stability of organic solar cells using PEDOT: PSS grafted with a PEGME buffer layer Org. Electron. 2015 26 191 199 10.1016/j.orgel.2015.07.022 

  40. 40. Na S.-I. Wang G. Kim S.-S. Kim T.-W. Oh S.-H. Yu B.-K. Lee T. Kim D.-Y. Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT: PSS films for polymeric anodes of polymer solar cells J. Mater. Chem. 2009 19 9045 9053 10.1039/b915756e 

  41. 41. Lee T.W. Chung Y. Control of the surface composition of a conducting-polymer complex film to tune the work function Adv. Funct. Mater. 2008 18 2246 2252 10.1002/adfm.200700766 

  42. 42. Thomas J.P. Zhao L. Abd-Ellah M. Heining N.F. Leung K.T. Interfacial micropore defect formation in PEDOT: PSS-Si hybrid solar cells probed by TOF-SIMS 3D chemical imaging Anal. Chem. 2013 85 6840 6845 10.1021/ac401084x 23745755 

  43. 43. Sheng J. Fam K. Wang D. Han C. Fang J. Gao P. Ye J. Improvement of the SiO x passivation layer for high-efficiency Si/PEDOT: PSS heterojunction solar cells ACS Appl. Mater. Interfaces 2014 6 16027 16034 10.1021/am503949g 25157634 

  44. 44. Moldovan A. Feldmann F. Kaufmann K. Richter S. Werner M. Hagendorf C. Zimmer M. Rentsch J. Hermle M. Tunnel oxide passivated carrier-selective contacts based on ultra-thin SiO 2 layers grown by photo-oxidation or wet-chemical oxidation in ozonized water Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) New Orleans, LA, USA 14–19 June 2015 IEEE Piscataway, NJ, USA 2015 

  45. 45. Zhang C. Zhang Y. Guo H. Jiang Q. Dong P. Zhang C. Efficient planar hybrid n-Si/PEDOT: PSS solar cells with power conversion efficiency up to 13 31% achieved by controlling the SiOx Interlayer. Energies 2018 11 1397 

  46. 46. Deal B.E. Grove A. General relationship for the thermal oxidation of silicon J. Appl. Phys. 1965 36 3770 3778 10.1063/1.1713945 

  47. 47. Kim W.-B. Asuha M.T. Kobayashi H. Ultrathin SiO 2 layer on atomically flat Si (111) surfaces with excellent electrical characteristics formed by nitric acid oxidation method Appl. Phys. Lett. 2008 93 072101 10.1063/1.2970040 

  48. 48. Moldovan A. Feldmann F. Krugel G. Zimmer M. Rentsch J. Hermle M. Roth-Fölsch A. Kaufmann K. Hagendorf C. Simple cleaning and conditioning of silicon surfaces with UV/ozone sources Energy Procedia 2014 55 834 844 10.1016/j.egypro.2014.08.067 

  49. 49. He L. Jiang C. Wang H. Lai D. Rusli High efficiency planar Si/organic heterojunction hybrid solar cells Appl. Phys. Lett. 2012 100 073503 10.1063/1.3684872 

  50. 50. Chhabra B. Bowden S. Opila R.L. Honsberg C.B. High effective minority carrier lifetime on silicon substrates using quinhydrone-methanol passivation Appl. Phys. Lett. 2010 96 063502 10.1063/1.3309595 

  51. 51. Avasthi S. Qi Y. Vertelov G.K. Schwartz J. Kahn A. Sturm J.C. Silicon surface passivation by an organic overlayer of 9, 10-phenanthrenequinone Appl. Phys. Lett. 2010 96 222109 10.1063/1.3429585 

  52. 52. Miramond C. Vuillaume D. 1-octadecene monolayers on Si (111) hydrogen-terminated surfaces: Effect of substrate doping J. Appl. Phys. 2004 96 1529 1536 10.1063/1.1767984 

  53. 53. Liu C. Zhang P. Zhai X. Tian F. Li W. Yang J. Liu Y. Wang H. Wang W. Liu W. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence Biomaterials 2012 33 3604 3613 10.1016/j.biomaterials.2012.01.052 22341214 

  54. 54. Liu D. Zhang Y. Fang X. Zhang F. Song T. Sun B. An 11%-power-conversion-efficiency organic–inorganic hybrid solar cell achieved by facile organic passivation IEEE Electron Device Lett. 2013 34 345 347 10.1109/LED.2013.2239255 

  55. 55. Alemu D. Wei H.-Y. Ho K.-C. Chu C.-W. Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells Energy Environ. Sci. 2012 5 9662 9671 10.1039/c2ee22595f 

  56. 56. Song I. Park N.Y. Jeong G.S. Kang J.H. Seo J.H. Choi J.-Y. Conductive channel formation for enhanced electrical conductivity of PEDOT: PSS with high work-function Appl. Surf. Sci. 2020 529 147176 10.1016/j.apsusc.2020.147176 

  57. 57. Li J. Liu J.-C. Gao C.-J. On the mechanism of conductivity enhancement in PEDOT/PSS film doped with multi-walled carbon nanotubes J. Polym. Res. 2010 17 713 718 10.1007/s10965-009-9360-1 

  58. 58. Hosseini E. Kollath V.O. Karan K. The key mechanism of conductivity in PEDOT: PSS thin films exposed by anomalous conduction behaviour upon solvent-doping and sulfuric acid post-treatment J. Mater. Chem. C 2020 8 3982 3990 10.1039/C9TC06311K 

  59. 59. Jeong S.-H. Woo S.-H. Han T.-H. Park M.-H. Cho H. Kim Y.-H. Cho H. Kim H. Yoo S. Lee T.-W. Universal high work function flexible anode for simplified ITO-free organic and perovskite light-emitting diodes with ultra-high efficiency NPG Asia Mater. 2017 9 e411 10.1038/am.2017.108 

  60. 60. Sarkar B. Jaiswal M. Satapathy D.K. Swelling kinetics and electrical charge transport in PEDOT: PSS thin films exposed to water vapor J. Phys. Condens. Matter 2018 30 225101 10.1088/1361-648X/aabe51 29658886 

  61. 61. Cruz-Cruz I. Reyes-Reyes M. Aguilar-Frutis M.A. Rodriguez A.G. López-Sandoval R. Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT: PSS thin films Synth. Met. 2010 160 1501 1506 10.1016/j.synthmet.2010.05.010 

  62. 62. Mahato S. Puigdollers J. Voz C. Mukhopadhyay M. Mukherjee M. Hazra S. Near 5% DMSO is the best: A structural investigation of PEDOT: PSS thin films with strong emphasis on surface and interface for hybrid solar cell Appl. Surf. Sci. 2020 499 143967 10.1016/j.apsusc.2019.143967 

  63. 63. Thomas J.P. Zhao L. McGillivray D. Leung K.T. High-efficiency hybrid solar cells by nanostructural modification in PEDOT: PSS with co-solvent addition J. Mater. Chem. A 2014 2 2383 2389 10.1039/c3ta14590e 

  64. 64. Lin Y.-J. Lee J.-Y. Chen S.-M. Changing electrical properties of PEDOT: PSS by incorporating with dimethyl sulfoxide Chem. Phys. Lett. 2016 664 213 218 10.1016/j.cplett.2016.10.038 

  65. 65. Hu Z. Zhang J. Zhu Y. Effects of solvent-treated PEDOT: PSS on organic photovoltaic devices Renew. Energy 2014 62 100 105 10.1016/j.renene.2013.06.042 

  66. 66. Choi J.-Y. Understanding of Molecular Contribution of Quinhydrone/Methanol Organic Passivation for Improved Minority Carrier Lifetime on Nanostructured Silicon Surface Appl. Sci. 2019 9 3645 10.3390/app9183645 

  67. 67. Zou Z. Liu W. Wang D. Liu Z. Jiang E. Wu S. Zhu J. Guo W. Sheng J. Ye J. Electron-selective quinhydrone passivated back contact for high-efficiency silicon/organic heterojunction solar cells Sol. Energy Mater. Sol. Cells 2018 185 218 225 10.1016/j.solmat.2018.05.041 

  68. 68. McIntosh K.R. Black L.E. On effective surface recombination parameters J. Appl. Phys. 2014 116 014503 10.1063/1.4886595 

  69. 69. Kato H.S. Kawai M. Akagi K. Tsuneyuki S. Interaction of condensed water molecules with hydroxyl and hydrogen groups on Si (0 0 1) Surf. Sci. 2005 587 34 40 10.1016/j.susc.2005.04.032 

  70. 70. Zheng W. Sun C. Bai B. Molecular dynamics study on the effect of surface hydroxyl groups on three-phase wettability in oil-water-graphite systems Polymers 2017 9 370 10.3390/polym9080370 30971049 

  71. 71. Li S. Wen X. Zhou J. Zheng N. Liu L. Xie Z. Construction of Interface Dipoles by Surface Doping and Their Role in the Open Circuit Voltage in Polymer Solar Cells Org. Mater. 2020 2 71 77 10.1055/s-0040-1702933 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로