$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Based on machine learning scheme to develop a smart robot embedded with GMM-UBM

Journal of intelligent & fuzzy systems, v.40 no.4, 2021년, pp.7925 - 7937  

Chen, Joy Iong-Zong (Department of Electrical Engineering, Da-Yeh University, Dacun, Changhua, Taiwan (R.O.C.)) ,  Hengjinda, P. (Department of Electrical Engineering, Da-Yeh University, Dacun, Changhua, Taiwan (R.O.C.)) ,  Hsieh, Wen-Hsiang

Abstract AI-Helper 아이콘AI-Helper

Smart Robot embedded with GMM-UBM (Gaussian mixture model- universal background model) based on the machine learning scheme is presented in the article. Authors have designed a smart robot for the farmer and which is designed controlled by the concept of machine learning. On the other hand, the tech...

참고문헌 (20)

  1. Frontiers in Plant Science 7 1 Using deep learning for image-based plant disease detection Mohanty 2016 10.3389/fpls.2016.01419 

  2. IEEE Trans. 50 2071 Wu 2014 

  3. IEEE Intell. Syst. 23 14 Sharkey 2008 10.1109/MIS.2008.60 

  4. IEEE Transactions on Systems, Man, and Cybernetics 36 172 Perceptual learning and abstraction in machine learning: an application to autonomous robotics Bredeche 2006 10.1109/TSMCC.2006.871139 

  5. 10.1109/ICMA.2017.8016120 Hatano M. , Estimation of center of gravity for withdrawal works of unknown indefinite shape rubbles for rescue robots, Proceeding of IEEE International Conference on Mechatronics and Automation (2017), 1970-1975. 

  6. IEEE Transactions on Industrial Informatics 14 3244 GMM and CNN hybrid method for short utterance speaker recognition Liu 2018 10.1109/TII.2018.2799928 

  7. 10.1109/ICEIEC.2019.8784501 Wu Ziteng and Zheng Lin , Emotional Communication Robot Based on 3D FaceModel and ASR Technology, IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), 2019, 726-730. 

  8. IEEE Transactions on System, Man, and Cybernetics 34 138 Human-robot interaction in rescue robotics Murphy 2004 10.1109/TSMCC.2004.826267 

  9. Ventura R. and Lima P.U. , Search and rescue robot: the civil protection teams of the future, Third International Conference on Emerging Security Technologies (2012), 12-19. 

  10. 10.1109/URAI.2017.7992670 Shin S. , Yoon D. , Song H. , Kim B. and Han J. , Communication System of a Segmented Rescue Robot Utilizing Socket Programming and ROS, The 14th International Conference onUbiquitousRobots andAmbient Intelligence, 2017, 565-569. 

  11. 10.1109/URAI.2016.7734045 Park J. , Yun D. , Park D. and Park C. , Dynamic Simulation of Joint Module with MR Damper for Mobile Rescue Robot, The 13th International Conference on Ubiquitous Robots and Ambient Intelligence, 2016, 157-158 

  12. IEEE Access 7 14124 Efficient laser-based 3D SLAM for coal mine rescue robots Li 2019 10.1109/ACCESS.2018.2889304 

  13. 10.1109/ICISET.2016.7856489 Uddin Z. and Islam M. , Search and Rescue System for Alive Human Detection by Semi-autonomous Mobile Rescue Robot, the International Conference on Innovations in Science, Engineering and Technology, 2016. 

  14. 10.1109/ICCIDS.2019.8862041 Kanimozhi S. , Gayathri G. and Mala T. , Multiple Real-time object identification using Single shot Multi-Box detection, the 2nd International Conference on Computational Intelligence in Data Science, 2019. 

  15. 10.1109/ICIP.2018.8451034 Kim J.U. , Kwon J. , Kim H.G. , Lee H. and Ro Y.M. , Object Bounding Box-Critic Networks for Occlusion-Robust Object Detection in Road Scene, the 25th IEEE International Conference on Image Processing, 2018, 1313-1317. 

  16. 10.1109/ICCE-TW.2014.6904109 Ju T.F. , Lu W.M. , Chen K.H. and Guo J.I. , Vision-based moving objects detection for intelligent automobiles and a robustness enhancing method, IEEE International Conference on Consumer Electronics - Taiwan, 2014, 75-76. 

  17. 10.1109/ICCONS.2018.8662921 Mane S. and Mangle S. , Moving object detection and tracking Using Convolutional Neural Networks, the 2nd International Conference on Intelligent Computing and Control Systems, 2018, 1809-1813. 

  18. 10.1109/ICIVC.2018.8492803 Yu L. , Chen X. and Zhou S. , Research of image main objects detection algorithm based on deep learning, the 3rd IEEE International Conference on Image, Vision and Computing, 2018, 70-75. 

  19. 10.1109/ICICES.2014.7033891 Bharath R.R. and Dhivya G. , Moving Object Detection, Classification and its Parametric Evaluation, International Conference on Information Communication and Embedded Systems, 2014. 

  20. 10.1109/CVPR.2016.308 Szegedy C. , Vanhoucke V. , Ioffe S. , Shlens J. and Wojna Z. , Re-thinking the Inception Architecture for Computer-Vision, IEEE Conference on ComputerVision and Pattern Recognition (CVPR), 2016, 2818-2826. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로