$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Anti-Metastatic and Anti-Inflammatory Effects of Matrix Metalloproteinase Inhibition by Ginsenosides 원문보기

Biomedicines, v.9 no.2, 2021년, pp.198 -   

Lee, Sang Yeol

Abstract AI-Helper 아이콘AI-Helper

Matrix metalloproteinases (MMPs) are proteolytic enzymes which cleave extracellular matrix (ECM) and other substrates. They are deeply involved in both cancer metastasis and human chronic inflammatory diseases such as osteoarthritis and Crohn’s disease. Regulation of MMPs is closely associated...

주제어

참고문헌 (132)

  1. 1. Dillekas H. Rogers M.S. Straume O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 2019 8 5574 5576 10.1002/cam4.2474 31397113 

  2. 2. Sahai E. Illuminating the metastatic process Nat. Rev. Cancer 2007 7 737 749 10.1038/nrc2229 17891189 

  3. 3. Nyberg P. Salo T. Kalluri R. Tumor microenvironment and angiogenesis Front. Biosci. 2008 13 6537 6553 10.2741/3173 18508679 

  4. 4. Winkler J. Abisoye-Ogunniyan A. Metcalf K.J. Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis Nat. Commun. 2020 11 5120 10.1038/s41467-020-18794-x 33037194 

  5. 5. Paolillo M. Schinelli S. Extracellular Matrix Alterations in Metastatic Processes Int. J. Mol. Sci. 2019 20 4947 10.3390/ijms20194947 

  6. 6. Arroyo A.G. Iruela-Arispe M.L. Extracellular matrix, inflammation, and the angiogenic response Cardiovasc. Res. 2010 86 226 235 10.1093/cvr/cvq049 20154066 

  7. 7. Nissinen L. Kahari V.M. Matrix metalloproteinases in inflammation Biochim. Biophys. Acta 2014 1840 2571 2580 10.1016/j.bbagen.2014.03.007 24631662 

  8. 8. Chung H.S. Lee Y.C. Rhee Y.K. Lee S.Y. Consumer acceptance of ginseng food products J. Food Sci. 2011 76 S516 S522 10.1111/j.1750-3841.2011.02399.x 22416723 

  9. 9. Yu S.E. Mwesige B. Yi Y.S. Yoo B.C. Ginsenosides: The need to move forward from bench to clinical trials J. Ginseng Res. 2019 43 361 367 10.1016/j.jgr.2018.09.001 31308807 

  10. 10. Lee I.S. Kang K.S. Kim S.Y. Panax ginseng Pharmacopuncture: Current Status of the Research and Future Challenges Biomolecules 2019 10 33 10.3390/biom10010033 

  11. 11. Choi J. Kim T.H. Choi T.Y. Lee M.S. Ginseng for health care: A systematic review of randomized controlled trials in Korean literature PLoS ONE 2013 8 e59978 10.1371/journal.pone.0059978 23560064 

  12. 12. Ahuja A. Kim J.H. Kim J.H. Yi Y.S. Cho J.Y. Functional role of ginseng-derived compounds in cancer J. Ginseng Res. 2018 42 248 254 10.1016/j.jgr.2017.04.009 29983605 

  13. 13. Kim J.H. Yi Y.S. Kim M.Y. Cho J.Y. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases J. Ginseng Res. 2017 41 435 443 10.1016/j.jgr.2016.08.004 29021688 

  14. 14. Leung K.W. Wong A.S. Pharmacology of ginsenosides: A literature review Chin. Med. 2010 5 20 10.1186/1749-8546-5-20 20537195 

  15. 15. Heerboth S. Housman G. Leary M. Longacre M. Byler S. Lapinska K. Willbanks A. Sarkar S. EMT and tumor metastasis Clin. Transl. Med. 2015 4 6 10.1186/s40169-015-0048-3 25852822 

  16. 16. Overall C.M. Molecular determinants of metalloproteinase substrate specificity: Matrix metalloproteinase substrate binding domains, modules, and exosites Mol. Biotechnol. 2002 22 51 86 10.1385/MB:22:1:051 12353914 

  17. 17. Deryugina E.I. Quigley J.P. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: Contrasting, overlapping and compensatory functions Biochim. Biophys. Acta 2010 1803 103 120 10.1016/j.bbamcr.2009.09.017 19800930 

  18. 18. Itoh Y. Membrane-type matrix metalloproteinases: Their functions and regulations Matrix Biol. 2015 44–46 207 223 10.1016/j.matbio.2015.03.004 

  19. 19. Jablonska-Trypuc A. Matejczyk M. Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs J. Enzym Inhib Med. Ch. 2016 31 177 183 10.3109/14756366.2016.1161620 27028474 

  20. 20. Verma R.P. Hansch C. Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs Bioorg. Med. Chem. 2007 15 2223 2268 10.1016/j.bmc.2007.01.011 17275314 

  21. 21. Pittayapruek P. Meephansan J. Prapapan O. Komine M. Ohtsuki M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis Int. J. Mol. Sci. 2016 17 868 10.3390/ijms17060868 

  22. 22. Han A.R. Lim T.G. Song Y.R. Jang M. Rhee Y.K. Hong H.D. Kim M.H. Kim H.J. Cho C.W. Inhibitory Effect of Opuntia humifusa Fruit Water Extract on Solar Ultraviolet-Induced MMP-1 Expression Int. J. Mol. Sci. 2018 19 2530 10.3390/ijms19092503 30149526 

  23. 23. Thiery J.P. Epithelial-mesenchymal transitions in tumour progression Nat. Rev. Cancer 2002 2 442 454 10.1038/nrc822 12189386 

  24. 24. Dufour A. Sampson N.S. Zucker S. Cao J. Role of the hemopexin domain of matrix metalloproteinases in cell migration J. Cell Physiol. 2008 217 643 651 10.1002/jcp.21535 18636552 

  25. 25. Mack M. Inflammation and fibrosis Matrix Biol. 2018 68–69 106 121 10.1016/j.matbio.2017.11.010 

  26. 26. Vandenbroucke R.E. Dejonckheere E. Van Hauwermeiren F. Lodens S. De Rycke R. Van Wonterghem E. Staes A. Gevaert K. Lopez-Otin C. Libert C. Matrix metalloproteinase 13 modulates intestinal epithelial barrier integrity in inflammatory diseases by activating TNF Embo Mol. Med. 2013 5 1000 1016 10.1002/emmm.201202100 23723167 

  27. 27. Schönbeck U. Mach F. Libby P. Generation of biologically active IL-1β by matrix metalloproteinases: A novel caspase-1-independent pathway of IL-1β processing J. Immunol. 1998 161 3340 3346 9759850 

  28. 28. Manfredi M.A. Zurakowski D. Rufo P.A. Walker T.R. Fox V.L. Moses M.A. Increased incidence of urinary matrix metalloproteinases as predictors of disease in pediatric patients with inflammatory bowel disease Inflamm. Bowel. Dis. 2008 14 1091 1096 10.1002/ibd.20419 18338781 

  29. 29. Guan W.J. Gao Y.H. Xu G. Lin Z.Y. Tang Y. Gu Y.Y. Liu G.H. Li H.M. Chen R.C. Zhong N.S. Sputum matrix metalloproteinase-8 and -9 and tissue inhibitor of metalloproteinase-1 in bronchiectasis: Clinical correlates and prognostic implications Respirology 2015 20 1073 1081 10.1111/resp.12582 26122009 

  30. 30. Braicu C. Buse M. Busuioc C. Drula R. Gulei D. Raduly L. Rusu A. Irimie A. Atanasov A.G. Slaby O. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer Cancers 2019 11 1618 10.3390/cancers11101618 

  31. 31. Gao J. Zhu H. Wan H. Zou X. Ma X. Gao G. Harmine suppresses the proliferation and migration of human ovarian cancer cells through inhibiting ERK/CREB pathway Oncol. Rep. 2017 38 2927 2934 10.3892/or.2017.5952 28901502 

  32. 32. Kang K.A. Zhang R. Piao M.J. Ko D.O. Wang Z.H. Lee I.K. Kim B.J. Shin T. Park J.W. Lee N.H. Inhibitory effects of triphlorethol-A on MMP-1 induced by oxidative stress in human keratinocytes via ERK and AP-1 inhibition J. Toxicol. Environ. Health A 2008 71 992 999 10.1080/01932690801934653 18569608 

  33. 33. Huang X. Pan Q. Mao Z. Wang P. Zhang R. Ma X. Chen J. You H. Kaempferol inhibits interleukin1beta stimulated matrix metalloproteinases by suppressing the MAPKassociated ERK and P38 signaling pathways Mol. Med. Rep. 2018 18 2697 2704 10.3892/mmr.2018.9280 30015923 

  34. 34. Kumar B. Koul S. Petersen J. Khandrika L. Hwa J.S. Meacham R.B. Wilson S. Koul H.K. p38 mitogen-activated protein kinase-driven MAPKAPK2 regulates invasion of bladder cancer by modulation of MMP-2 and MMP-9 activity Cancer Res. 2010 70 832 841 10.1158/0008-5472.CAN-09-2918 20068172 

  35. 35. Hsieh M.J. Chen K.S. Chiou H.L. Hsieh Y.S. Carbonic anhydrase XII promotes invasion and migration ability of MDA-MB-231 breast cancer cells through the p38 MAPK signaling pathway Eur. J. Cell Biol. 2010 89 598 606 10.1016/j.ejcb.2010.03.004 20434230 

  36. 36. Park S.Y. Jeong K.J. Panupinthu N. Yu S. Lee J. Han J.W. Kim J.M. Lee J.S. Kang J. Park C.G. Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression Oncogene 2011 30 1351 1359 10.1038/onc.2010.517 21102517 

  37. 37. Johansson N. Ala-Aho R. Uitto V.J. Grenman R. Fusenig N.E. Lopez-Otin C. Kahari V.M. Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase J. Cell Sci. 2000 113 227 235 10633074 

  38. 38. Xu L. Chen S. Bergan R.C. MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer Oncogene 2006 25 2987 2998 10.1038/sj.onc.1209337 16407830 

  39. 39. Gkouveris I. Nikitakis N.G. Role of JNK signaling in oral cancer: A mini review Tumour. Biol. 2017 39 1010428317711659 10.1177/1010428317711659 28639904 

  40. 40. Xu R. Hu J. The role of JNK in prostate cancer progression and therapeutic strategies Biomed. Pharm. 2020 121 109679 10.1016/j.biopha.2019.109679 

  41. 41. Dhanasekaran D.N. Reddy E.P. JNK-signaling: A multiplexing hub in programmed cell death Genes Cancer 2017 8 682 694 10.18632/genesandcancer.155 29234486 

  42. 42. Yang C.C. Lin C.C. Hsiao L.D. Kuo J.M. Tseng H.C. Yang C.M. Lipopolysaccharide-Induced Matrix Metalloproteinase-9 Expression Associated with Cell Migration in Rat Brain Astrocytes Int. J. Mol. Sci. 2019 21 259 10.3390/ijms21010259 

  43. 43. Shin W.S. Hong Y. Lee H.W. Lee S.T. Catalytically defective receptor protein tyrosine kinase PTK7 enhances invasive phenotype by inducing MMP-9 through activation of AP-1 and NF-kappa B in esophageal squamous cell carcinoma cells Oncotarget 2016 7 73242 73256 10.18632/oncotarget.12303 27689325 

  44. 44. Jiang W. Cheng Y. Zhao N. Li L. Shi Y. Zong A. Wang F. Sulfated polysaccharide of Sepiella Maindroni ink inhibits the migration, invasion and matrix metalloproteinase-2 expression through suppressing EGFR-mediated p38/MAPK and PI3K/Akt/mTOR signaling pathways in SKOV-3 cells Int. J. Biol. Macromol. 2018 107 349 362 10.1016/j.ijbiomac.2017.08.178 28870748 

  45. 45. Leivonen S.K. Ala-Aho R. Koli K. Grenman R. Peltonen J. Kahari V.M. Activation of Smad signaling enhances collagenase-3 (MMP-13) expression and invasion of head and neck squamous carcinoma cells Oncogene 2006 25 2588 2600 10.1038/sj.onc.1209291 16407850 

  46. 46. Huang T. Zhou Y. Cheng A.S. Yu J. To K.F. Kang W. NOTCH receptors in gastric and other gastrointestinal cancers: Oncogenes or tumor suppressors? Mol. Cancer 2016 15 80 10.1186/s12943-016-0566-7 27938406 

  47. 47. Lee Y. Kim H. Kim S. Shin M.H. Kim Y.K. Kim K.H. Chung J.H. Myeloid differentiation factor 88 regulates basal and UV-induced expressions of IL-6 and MMP-1 in human epidermal keratinocytes J. Investig. Derm. 2009 129 460 467 10.1038/jid.2008.261 18719610 

  48. 48. Yun T.K. Brief introduction of Panax ginseng C.A. Meyer J. Korean Med. Sci. 2001 16 S3 S5 10.3346/jkms.2001.16.S.S3 11748372 

  49. 49. Cho I.H. Lee H.J. Kim Y.S. Differences in the volatile compositions of ginseng species (Panax sp.) J. Agric. Food Chem. 2012 60 7616 7622 10.1021/jf301835v 22804575 

  50. 50. Kaneko H. Nakanishi K. Proof of the mysterious efficacy of ginseng: Basic and clinical trials: Clinical effects of medical ginseng, Korean red ginseng: Specifically, its anti-stress action for prevention of disease J. Pharm. Sci. 2004 95 158 162 10.1254/jphs.FMJ04001X5 15215639 

  51. 51. Sadeghian M. Rahmani S. Zendehdel M. Hosseini S.A. Zare Javid A. Ginseng and Cancer-Related Fatigue: A Systematic Review of Clinical Trials Nutr. Cancer 2020 10.1080/01635581.2020.1795691 

  52. 52. Kim J.H. Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases J. Ginseng Res. 2018 42 264 269 10.1016/j.jgr.2017.10.004 29983607 

  53. 53. Razgonova M.P. Veselov V.V. Zakharenko A.M. Golokhvast K.S. Nosyrev A.E. Cravotto G. Tsatsakis A. Spandidos D.A. Panax ginseng components and the pathogenesis of Alzheimer’s disease Mol. Med. Rep. 2019 19 2975 2998 10.3892/mmr.2019.9972 30816465 

  54. 54. Mancuso C. Santangelo R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology Food Chem. Toxicol. 2017 107 362 372 10.1016/j.fct.2017.07.019 28698154 

  55. 55. Kang O.J. Kim J.S. Comparison of Ginsenoside Contents in Different Parts of Korean Ginseng (Panax ginseng C.A. Meyer) Prev. Nutr. Food Sci. 2016 21 389 392 10.3746/pnf.2016.21.4.389 28078264 

  56. 56. Ma Y.-C. Zhu J. Benkrima L. Luo M. Sun L. Sain S. Kont K. Plaut–Carcasson Y.Y. A comparative evaluation of ginsenosides in commercial ginseng products and tissue culture samples using HPLC J. Herbsspices Med. Plants 1996 3 41 50 10.1300/J044v03n04_06 

  57. 57. Shin B.K. Kwon S.W. Park J.H. Chemical diversity of ginseng saponins from Panax ginseng J. Ginseng Res. 2015 39 287 298 10.1016/j.jgr.2014.12.005 26869820 

  58. 58. Morita T. Tanaka O. Kohda H. Saponin composition of rhizomes of Panax japonicus collected in South Kyushu, Japan, and its significance in oriental traditional medicine Chem. Pharm. Bull. 1985 33 3852 3858 10.1248/cpb.33.3852 

  59. 59. Kim D.H. Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng J. Ginseng Res. 2012 36 1 15 10.5142/jgr.2012.36.1.1 23717099 

  60. 60. Komatsu Z.K.Z.S.K. Analysis of Saponins of Panax Stipuleanatus by Using HPLC andAPIMS/MS Techniques J. Univ. Hydraul. Electr. Eng. Yichang 2002 4 

  61. 61. Lee T.M. Marderosian A.D. Two-dimensional TLC analysis of ginsenosides from root of dwarf ginseng (panax trifolius L.) araliaceae J. Pharm. Sci. 1981 70 89 91 10.1002/jps.2600700119 7229936 

  62. 62. Yang C. Jiang Z. Wu M. Zhou J. Tanaka O. Studies on saponins of rhizomes of Panax zingiberensis Wu et Feng Acta Pharm. Sin. 1984 19 232 236 

  63. 63. Baguley B.C. Multiple drug resistance mechanisms in cancer Mol. Biotechnol. 2010 46 308 316 10.1007/s12033-010-9321-2 20717753 

  64. 64. Ong W.Y. Farooqui T. Koh H.L. Farooqui A.A. Ling E.A. Protective effects of ginseng on neurological disorders Front. Aging Neurosci. 2015 7 129 10.3389/fnagi.2015.00129 26236231 

  65. 65. Fang H. Limei Y. Effects of ginsenoside Rg1 on characteristics and functions of adult stem cells Chin. Pharmacol. Bull. 2016 32 319 322 

  66. 66. Li L. Wang Y. Qi B. Yuan D. Dong S. Guo D. Zhang C. Yu M. Suppression of PMA-induced tumor cell invasion and migration by ginsenoside Rg1 via the inhibition of NF-kappaB-dependent MMP-9 expression Oncol. Rep. 2014 32 1779 1786 10.3892/or.2014.3422 25174454 

  67. 67. Lee S.Y. Ginsenoside Rg1 Drives Stimulations of Timosaponin AIII-Induced Anticancer Effects in Human Osteosarcoma Cells Evid. Based Complement. Altern. Med. 2020 2020 8980124 10.1155/2020/8980124 

  68. 68. Xin Y. Wei J. Chunhua M. Danhong Y. Jianguo Z. Zongqi C. Jian-An B. Protective effects of Ginsenoside Rg1 against carbon tetrachloride-induced liver injury in mice through suppression of inflammation Phytomedicine 2016 23 583 588 10.1016/j.phymed.2016.02.026 27161399 

  69. 69. Guan S. Liu Q. Han F. Gu W. Song L. Zhang Y. Guo X. Xu W. Ginsenoside Rg1 Ameliorates Cigarette Smoke-Induced Airway Fibrosis by Suppressing the TGF-beta1/Smad Pathway In Vivo and In Vitro Biomed. Res. Int. 2017 2017 6510198 10.1155/2017/6510198 28421197 

  70. 70. Luo M. Yan D. Sun Q. Tao J. Xu L. Sun H. Zhao H. Ginsenoside Rg1 attenuates cardiomyocyte apoptosis and inflammation via the TLR4/NF-kB/NLRP3 pathway J. Cell Biochem. 2020 121 2994 3004 10.1002/jcb.29556 31709615 

  71. 71. Cheng W. Jing J. Wang Z. Wu D. Huang Y. Chondroprotective Effects of Ginsenoside Rg1 in Human Osteoarthritis Chondrocytes and a Rat Model of Anterior Cruciate Ligament Transection Nutrients 2017 9 263 10.3390/nu9030263 

  72. 72. Jovanovski E. Bateman E.A. Bhardwaj J. Fairgrieve C. Mucalo I. Jenkins A.L. Vuksan V. Effect of Rg3-enriched Korean red ginseng (Panax ginseng) on arterial stiffness and blood pressure in healthy individuals: A randomized controlled trial J. Am. Soc. Hypertens 2014 8 537 541 10.1016/j.jash.2014.04.004 24997863 

  73. 73. Chen X.J. Zhang X.J. Shui Y.M. Wan J.B. Gao J.L. Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites Evid. Based Complement. Altern. Med. 2016 10.1155/2016/5738694 

  74. 74. Sun M. Ye Y. Xiao L. Duan X. Zhang Y. Zhang H. Anticancer effects of ginsenoside Rg3 (Review) Int. J. Mol. Med. 2017 39 507 518 10.3892/ijmm.2017.2857 28098857 

  75. 75. Xu T.M. Cui M.H. Xin Y. Gu L.P. Jiang X. Su M.M. Wang D.D. Wang W.J. Inhibitory effect of ginsenoside Rg3 on ovarian cancer metastasis Chin. Med. J. 2008 121 1394 1397 10.1097/00029330-200808010-00012 18959116 

  76. 76. Kim Y.J. Choi W.I. Jeon B.N. Choi K.C. Kim K. Kim T.J. Ham J. Jang H.J. Kang K.S. Ko H. Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-beta 1-induced epithelial-mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance Toxicology 2014 322 23 33 10.1016/j.tox.2014.04.002 24793912 

  77. 77. Wang L. Li X. Song Y.M. Wang B. Zhang F.R. Yang R. Wang H.Q. Zhang G.J. Ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to gamma-radiation by targeting the nuclear factor-kappaB pathway Mol. Med. Rep. 2015 12 609 614 10.3892/mmr.2015.3397 25738799 

  78. 78. Guo J.-Q. Zheng Q.-H. Chen H. Chen L. Xu J.-B. Chen M.-Y. Lu D. Wang Z.-H. Tong H.-F. Lin S. Ginsenoside Rg3 inhibition of vasculogenic mimicry in pancreatic cancer through downregulation of VE-cadherin/EphA2/MMP9/MMP2 expression Int. J. Oncol. 2014 45 1065 1072 10.3892/ijo.2014.2500 24938458 

  79. 79. Junmin S. Hongxiang L. Zhen L. Chao Y. Chaojie W. Ginsenoside Rg3 inhibits colon cancer cell migration by suppressing nuclear factor kappa B activity J. Tradit Chin. Med. 2015 35 440 444 10.1016/S0254-6272(15)30122-9 26427115 

  80. 80. Li J. Qi Y. Ginsenoside Rg3 inhibits cell growth, migration and invasion in Caco-2 cells by downregulation of lncRNA CCAT1 Exp. Mol. Pathol. 2019 106 131 138 10.1016/j.yexmp.2019.01.003 30633886 

  81. 81. Wu W. Zhou Q. Zhao W. Gong Y. Su A. Liu F. Liu Y. Li Z. Zhu J. Ginsenoside Rg3 Inhibition of Thyroid Cancer Metastasis Is Associated with Alternation of Actin Skeleton J. Med. Food 2018 21 849 857 10.1089/jmf.2017.4144 30136914 

  82. 82. Geng L. Fan J. Gao Q.L. Yu J. Hua B.J. [Preliminary study for the roles and mechanisms of 20(R)-ginsenoside Rg3 and PEG-PLGA-Rg3 nanoparticles in the Lewis lung cancer mice] Beijing Da Xue Xue Bao Yi Xue Ban 2016 48 496 501 27318914 

  83. 83. Wang D. Wu C. Liu D. Zhang L. Long G. Hu G. Sun W. Ginsenoside Rg3 Inhibits Migration and Invasion of Nasopharyngeal Carcinoma Cells and Suppresses Epithelial Mesenchymal Transition Biomed. Res. Int. 2019 2019 8407683 10.1155/2019/8407683 30915362 

  84. 84. Meng L.B. Ji R. Dong X.M. Xu X.C. Xin Y. Jiang X. Antitumor activity of ginsenoside Rg3 in melanoma through downregulation of the ERK and Akt pathways Int. J. Oncol. 2019 54 2069 2079 10.3892/ijo.2019.4787 31081060 

  85. 85. Zhang Y. Liu Q.Z. Xing S.P. Zhang J.L. Inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice Asian Pac. J. Trop Med. 2016 9 180 183 10.1016/j.apjtm.2016.01.010 26919952 

  86. 86. Lee S.G. Kang Y.J. Nam J.O. Anti-Metastasis Effects of Ginsenoside Rg3 in B16F10 Cells J. Microbiol. Biotechnol. 2015 25 1997 2006 10.4014/jmb.1506.06002 26370799 

  87. 87. Shin Y.M. Jung H.J. Choi W.Y. Lim C.J. Antioxidative, anti-inflammatory, and matrix metalloproteinase inhibitory activities of 20(S)-ginsenoside Rg3 in cultured mammalian cell lines Mol. Biol. Rep. 2013 40 269 279 10.1007/s11033-012-2058-1 23054007 

  88. 88. Lee J.H. Lim H. Shehzad O. Kim Y.S. Kim H.P. Ginsenosides from Korean red ginseng inhibit matrix metalloproteinase-13 expression in articular chondrocytes and prevent cartilage degradation Eur. J. Pharm. 2014 724 145 151 10.1016/j.ejphar.2013.12.035 

  89. 89. Choi J.H. Cho S.H. Yun J.J. Yu Y.B. Cho C.W. Ethosomes and Transfersomes for Topical Delivery of Ginsenoside Rh1 from Red Ginseng: Characterization and In Vitro Evaluation J. Nanosci. Nanotechnol. 2015 15 5660 5662 10.1166/jnn.2015.10462 26369134 

  90. 90. Tam D.N.H. Truong D.H. Nguyen T.T.H. Quynh L.N. Tran L. Nguyen H.D. Shamandy B.E. Le T.M.H. Tran D.K. Sayed D. Ginsenoside Rh1: A Systematic Review of Its Pharmacological Properties Planta Med. 2018 84 139 152 10.1055/s-0043-124087 29329463 

  91. 91. Yoon J.H. Choi Y.J. Lee S.G. Ginsenoside Rh1 suppresses matrix metalloproteinase-1 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathway in human hepatocellular carcinoma cells Eur. J. Pharmacol. 2012 679 24 33 10.1016/j.ejphar.2012.01.020 22314224 

  92. 92. Jung J.S. Ahn J.H. Le T.K. Kim D.H. Kim H.S. Protopanaxatriol ginsenoside Rh1 inhibits the expression of matrix metalloproteinases and the in vitro invasion/migration of human astroglioma cells Neurochem. Int. 2013 63 80 86 10.1016/j.neuint.2013.05.002 23684955 

  93. 93. Lyu X. Xu X. Song A. Guo J. Zhang Y. Zhang Y. Ginsenoside Rh1 inhibits colorectal cancer cell migration and invasion in vitro and tumor growth in vivo Oncol. Lett. 2019 18 4160 4166 10.3892/ol.2019.10742 31579419 

  94. 94. Jung J.S. Shin J.A. Park E.M. Lee J.E. Kang Y.S. Min S.W. Kim D.H. Hyun J.W. Shin C.Y. Kim H.S. Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide-stimulated microglia: Critical role of the protein kinase A pathway and hemeoxygenase-1 expression J. Neurochem. 2010 115 1668 1680 10.1111/j.1471-4159.2010.07075.x 20969575 

  95. 95. Wang Y.S. Lin Y. Li H. Li Y. Song Z. Jin Y.H. The identification of molecular target of (20S) ginsenoside Rh2 for its anti-cancer activity Sci. Rep. 2017 7 12408 10.1038/s41598-017-12572-4 28963461 

  96. 96. Kim S.Y. Kim D.H. Han S.J. Hyun J.W. Kim H.S. Repression of matrix metalloproteinase gene expression by ginsenoside Rh2 in human astroglioma cells Biochem. Pharm. 2007 74 1642 1651 10.1016/j.bcp.2007.08.015 17880928 

  97. 97. Tang X.P. Tang G.D. Fang C.Y. Liang Z.H. Zhang L.Y. Effects of ginsenoside Rh2 on growth and migration of pancreatic cancer cells World J. Gastroenterol. 2013 19 1582 1592 10.3748/wjg.v19.i10.1582 23538603 

  98. 98. Li H.L. Huang N. Zhu W.K. Wu J.C. Yang X.H. Teng W.J. Tian J.H. Fang Z.H. Luo Y.B. Chen M. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2 BMC Cancer 2018 18 10.1186/s12885-018-4299-4 

  99. 99. Guan N. Huo X. Zhang Z. Zhang S. Luo J. Guo W. Ginsenoside Rh2 inhibits metastasis of glioblastoma multiforme through Akt-regulated MMP13 Tumour. Biol. 2015 36 6789 6795 10.1007/s13277-015-3387-1 25835975 

  100. 100. Han S. Jeong A.J. Yang H. Bin Kang K. Lee H. Yi E.H. Kim B.H. Cho C.H. Chung J.W. Sung S.H. Ginsenoside 20(S)-Rh2 exerts anti-cancer activity through targeting IL-6-induced JAK2/STAT3 pathway in human colorectal cancer cells J. Ethnopharmacol. 2016 194 83 90 10.1016/j.jep.2016.08.039 27566200 

  101. 101. Zhang X.P. Li K.R. Yu Q. Yao M.D. Ge H.M. Li X.M. Jiang Q. Yao J. Cao C. Ginsenoside Rh2 inhibits vascular endothelial growth factor-induced corneal neovascularization Faseb J. 2018 32 3782 3791 10.1096/fj.201701074RR 29465315 

  102. 102. Choi W.Y. Lim H.W. Lim C.J. Anti-inflammatory, antioxidative and matrix metalloproteinase inhibitory properties of 20(R)-ginsenoside Rh2 in cultured macrophages and keratinocytes J. Pharm. Pharm. 2013 65 310 316 10.1111/j.2042-7158.2012.01598.x 

  103. 103. Wang W. Zeng L. Wang Z.M. Zhang S. Rong X.F. Li R.H. Ginsenoside Rb1 inhibits matrix metalloproteinase 13 through down-regulating Notch signaling pathway in osteoarthritis Exp. Biol. Med. (Maywood) 2015 240 1614 1621 10.1177/1535370215587918 26062798 

  104. 104. Cheng W. Wu D. Zuo Q. Wang Z. Fan W. Ginsenoside Rb1 prevents interleukin-1 beta induced inflammation and apoptosis in human articular chondrocytes Int. Orthop. 2013 37 2065 2070 10.1007/s00264-013-1990-6 23835558 

  105. 105. Chen Y. Lin S. Sun Y. Pan X. Xiao L. Zou L. Ho K.W. Li G. Translational potential of ginsenoside Rb1 in managing progression of osteoarthritis J. Orthop. Transl. 2016 6 27 33 10.1016/j.jot.2016.03.001 

  106. 106. Zhang X.J. He C.W. Tian K. Li P. Su H.X. Wan J.B. Ginsenoside Rb1 attenuates angiotensin II-induced abdominal aortic aneurysm through inactivation of the JNK and p38 signaling pathways Vasc Pharm. 2015 73 86 95 10.1016/j.vph.2015.04.003 

  107. 107. Chen W. Guo Y. Yang W. Zheng P. Zeng J. Tong W. Protective effect of ginsenoside Rb1 on integrity of blood-brain barrier following cerebral ischemia Exp. Brain Res. 2015 233 2823 2831 10.1007/s00221-015-4352-3 26070903 

  108. 108. Lee S.Y. Synergistic effect of maclurin on ginsenoside compound K induced inhibition of the transcriptional expression of matrix metalloproteinase-1 in HaCaT human keratinocyte cells J. Ginseng Res. 2018 42 229 232 10.1016/j.jgr.2017.11.003 29719471 

  109. 109. Yang X.D. Yang Y.Y. Ouyang D.S. Yang G.P. A review of biotransformation and pharmacology of ginsenoside compound K Fitoterapia 2015 100 208 220 10.1016/j.fitote.2014.11.019 25449425 

  110. 110. Ming Y. Chen Z. Chen L. Lin D. Tong Q. Zheng Z. Song G. Ginsenoside compound K attenuates metastatic growth of hepatocellular carcinoma, which is associated with the translocation of nuclear factor-kappaB p65 and reduction of matrix metalloproteinase-2/9 Planta Med. 2011 77 428 433 10.1055/s-0030-1250454 20979019 

  111. 111. Yang L. Zhang Z.H. Hou J. Jin X. Ke Z.C. Liu D. Du M. Jia X.B. Lv H.X. Targeted delivery of ginsenoside compound K using TPGS/PEG-PCL mixed micelles for effective treatment of lung cancer Int. J. Nanomed. 2017 12 7653 7667 10.2147/IJN.S144305 29089761 

  112. 112. Chen K. Jiao J. Xue J. Chen T. Hou Y. Jiang Y. Qian L. Wang Y. Ma Z. Liang Z. Ginsenoside CK induces apoptosis and suppresses proliferation and invasion of human osteosarcoma cells through the PI3K/mTOR/p70S6K1 pathway Oncol. Rep. 2020 43 886 896 10.3892/or.2020.7460 32020217 

  113. 113. Jung S.H. Woo M.S. Kim S.Y. Kim W.K. Hyun J.W. Kim E.J. Kim D.H. Kim H.S. Ginseng saponin metabolite suppresses phorbol ester-induced matrix metalloproteinase-9 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathways in human astroglioma cells Int. J. Cancer 2006 118 490 497 10.1002/ijc.21356 16049964 

  114. 114. Park J.S. Shin J.A. Jung J.S. Hyun J.W. Van Le T.K. Kim D.H. Park E.M. Kim H.S. Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice J. Pharm. Exp. 2012 341 59 67 10.1124/jpet.111.189035 22207656 

  115. 115. Wu C.F. Bi X.L. Yang J.Y. Zhan J.Y. Dong Y.X. Wang J.H. Wang J.M. Zhang R. Li X. Differential effects of ginsenosides on NO and TNF-α production by LPS-activated N9 microglia Int. Immunopharmacol. 2007 7 313 320 10.1016/j.intimp.2006.04.021 17276889 

  116. 116. Ye R. Yang Q. Kong X. Han J. Zhang X. Zhang Y. Li P. Liu J. Shi M. Xiong L. Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats Neurochem. Int. 2011 58 391 398 10.1016/j.neuint.2010.12.015 21185898 

  117. 117. Kim D.H. Chung J.H. Yoon J.S. Ha Y.M. Bae S. Lee E.K. Jung K.J. Kim M.S. Kim Y.J. Kim M.K. Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-kappaB in LPS-stimulated RAW264.7 cells and mouse liver J. Ginseng Res. 2013 37 54 63 10.5142/jgr.2013.37.54 23717157 

  118. 118. Wang P. Du X. Xiong M. Cui J. Yang Q. Wang W. Chen Y. Zhang T. Ginsenoside Rd attenuates breast cancer metastasis implicating derepressing microRNA-18a-regulated Smad2 expression Sci. Rep. 2016 6 33709 10.1038/srep33709 27641158 

  119. 119. Yoon J.H. Choi Y.J. Cha S.W. Lee S.G. Anti-metastatic effects of ginsenoside Rd via inactivation of MAPK signaling and induction of focal adhesion formation Phytomedicine 2012 19 284 292 10.1016/j.phymed.2011.08.069 21982435 

  120. 120. Hong Y. Lin Y. Si Q. Yang L. Dong W. Gu X. Ginsenoside Rb2 Alleviates Obesity by Activation of Brown Fat and Induction of Browning of White Fat Front. Endocrinol. (Lausanne) 2019 10 153 10.3389/fendo.2019.00153 30930854 

  121. 121. Fujimoto J. Sakaguchi H. Aoki I. Toyoki H. Khatun S. Tamaya T. Inhibitory effect of ginsenoside-Rb2 on invasiveness of uterine endometrial cancer cells to the basement membrane Eur. J. Gynaecol. Oncol. 2001 22 339 341 11766734 

  122. 122. Shin J.Y. Lee J.M. Shin H.S. Park S.Y. Yang J.E. Cho S.K. Yi T.H. Anti-Cancer Effect of Ginsenoside F2 against Glioblastoma Multiforme in Xenograft Model in SD Rats J. Ginseng Res. 2012 36 86 92 10.5142/jgr.2012.36.1.86 23717108 

  123. 123. Zhang L.H. Jia Y.L. Lin X.X. Zhang H.Q. Dong X.W. Zhao J.M. Shen J. Shen H.J. Li F.F. Yan X.F. AD-1, a novel ginsenoside derivative, shows anti-lung cancer activity via activation of p38 MAPK pathway and generation of reactive oxygen species Bba-Gen. Subj. 2013 1830 4148 4159 10.1016/j.bbagen.2013.04.008 

  124. 124. Wang X.D. Sun Y.Y. Qu F.Z. Su G.Y. Zhao Y.Q. 4-XL-PPD, a novel ginsenoside derivative, as potential therapeutic agents for gastric cancer shows anti-cancer activity via inducing cell apoptosis medicated generation of reactive oxygen species and inhibiting migratory and invasive Biomed. Pharmacother. 2019 118 10.1016/j.biopha.2019.01.050 31382131 

  125. 125. Lee Y.Y. Park J.S. Jung J.S. Kim D.H. Kim H.S. Anti-Inflammatory Effect of Ginsenoside Rg5 in Lipopolysaccharide-Stimulated BV2 Microglial Cells Int. J. Mol. Sci. 2013 14 9820 9833 10.3390/ijms14059820 23698769 

  126. 126. Ma L. Liu H. Xie Z. Yang S. Xu W. Hou J. Yu B. Ginsenoside Rb3 protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of JNK-mediated NF-kappaB pathway: A mouse cardiomyocyte model PLoS ONE 2014 9 e103628 10.1371/journal.pone.0103628 25084093 

  127. 127. Zhang X.H. Xu X.X. Xu T. Ginsenoside Ro suppresses interleukin-1beta-induced apoptosis and inflammation in rat chondrocytes by inhibiting NF-kappaB Chin. J. Nat. Med. 2015 13 283 289 10.1016/S1875-5364(15)30015-7 25908625 

  128. 128. Fields G.B. The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma Cells 2019 8 984 10.3390/cells8090984 

  129. 129. Gu Y. Wang G.J. Sun J.G. Jia Y.W. Wang W. Xu M.J. Lv T. Zheng Y.T. Sai Y. Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs Food Chem. Toxicol. 2009 47 2257 2268 10.1016/j.fct.2009.06.013 19524010 

  130. 130. Yu H. Teng L. Meng Q. Li Y. Sun X. Lu J. R J.L. Teng L. Development of liposomal Ginsenoside Rg3: Formulation optimization and evaluation of its anticancer effects Int. J. Pharm. 2013 450 250 258 10.1016/j.ijpharm.2013.04.065 23628402 

  131. 131. Sharma A. Lee H.J. Ginsenoside Compound K: Insights into Recent Studies on Pharmacokinetics and Health-Promoting Activities Biomolecules 2020 10 1028 10.3390/biom10071028 32664389 

  132. 132. Kim H. Lee J.H. Kim J.E. Kim Y.S. Ryu C.H. Lee H.J. Kim H.M. Jeon H. Won H.J. Lee J.Y. Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability J. Ginseng Res. 2018 42 361 369 10.1016/j.jgr.2017.12.003 29983618 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로