$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effectiveness of powered exoskeleton use on gait in individuals with cerebral palsy: A systematic review 원문보기

PLoS ONE, v.16 no.5, 2021년, pp.e0252193 -   

Bunge, Lucinda Rose (UniSA Allied Health & Human Performance, University of South Australia, Adelaide, Australia) ,  Davidson, Ashleigh Jade (UniSA Allied Health & Human Performance, University of South Australia, Adelaide, Australia) ,  Helmore, Benita Roslyn (UniSA Allied Health & Human Performance, University of South Australia, Adelaide, Australia) ,  Mavrandonis, Aleksandra Daniella (UniSA Allied Health & Human Performance, University of South Australia, Adelaide, Australia) ,  Page, Thomas David (UniSA Allied Health & Human Performance, University of South Australia, Adelaide, Australia) ,  Schuster-Bayly, Tegan Rochelle (UniSA Allied Health & Human Performance, University of South Australia, Adelaide, Australia) ,  Kumar, Saravana (UniSA Allied Health & Human Performance, University of South Australia, Adelaide, Australia)

Abstract AI-Helper 아이콘AI-Helper

BackgroundCerebral palsy (CP) is a leading cause of childhood disability. The motor impairments of individuals with CP significantly affect the kinematics of an efficient gait pattern. Robotic therapies have become increasingly popular as an intervention to address this. Powered lower limb exoskelet...

참고문헌 (52)

  1. 1 Carvalho I , Pinto SM , Chagas DDV , Praxedes Dos Santos JL , de Sousa Oliveira T , Batista LA . Robotic Gait Training for Individuals With Cerebral Palsy: A Systematic Review and Meta-Analysis . Arch Phys Med Rehabil . 2017 ; 98 ( 11 ): 2332 – 44 . Epub 2017/07/29. 10.1016/j.apmr.2017.06.018 . 28751254 

  2. 2 National Institute of Neurological Disorders and Stroke . Cerebral palsy: hope through research United States : National Institute of Health ; 2019 . Available from: https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Hope-Through-Research/Cerebral-Palsy-Hope-Through-Research . 

  3. 3 Schiariti V , Longo E , Shoshmin A , Kozhushko L , Besstrashnova Y , Id M , et al . Implementation of the International Classification of Functioning, Disability, and Health (ICF) Core Sets for Children and Youth with Cerebral Palsy: Global Initiatives Promoting Optimal Functioning. International Journal of Environmental Research and Public Health . 2018 ; 15 : 1899 . 10.3390/ijerph15091899 30200412 

  4. 4 Alliance CP . Australian cerebral palsy register report . 2018 . 

  5. 5 Johnson A . Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol . 2002 ; 44 ( 9 ): 633 – 40 . Epub 2002/09/16. 10.1017/S0012162201002675 12227618 

  6. 6 McGuire DO , Tian LH , Yeargin-Allsopp M , Dowling NF , Christensen DL . Prevalence of cerebral palsy, intellectual disability, hearing loss, and blindness, National Health Interview Survey, 2009–2016 . Disability and health journal . 2019 ; 12 ( 3 ): 443 – 51 . 10.1016/j.dhjo.2019.01.005 . 30713095 

  7. 7 Kakooza-Mwesige A , Andrews C , Peterson S , Mangen FW , Eliasson A , Forssberg H . Prevalence of cerebral palsy in Uganda: a population-based study . The Lancet Global health . 2017 ; 5 12 : e1275 – e82 . 10.1016/S2214-109X(17)30374-1 29102350 

  8. 8 Day SM , Reynolds RJ , Kush SJ . Extrapolating published survival curves to obtain evidence-based estimates of life expectancy in cerebral palsy . Dev Med Child Neurol . 2015 ; 57 ( 12 ): 1105 – 18 . 10.1111/dmcn.12849 26174088 

  9. 9 Paulson A , Vargus-Adams J . Overview of Four Functional Classification Systems Commonly Used in Cerebral Palsy . Children (Basel). 2017 ; 4 ( 4 ): 30 . 10.3390/children4040030 . 28441773 

  10. 10 Deloitte Access Economics. The cost of cerebral palsy in Australia in 2018. Australia: Deloitte, 2019. 

  11. 11 Lefmann S , Russo R , Hillier S . The effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review . Journal of NeuroEngineering and Rehabilitation . 2017 ; 14 ( 1 ): 1 . 10.1186/s12984-016-0214-x 28057016 

  12. 12 Novak I , McIntyre S , Morgan C , Campbell L , Dark L , Morton N , et al . A systematic review of interventions for children with cerebral palsy: state of the evidence. Developmental medicine and child neurology . 2013 ; 55 ( 10 ): 885 – 910 . 10.1111/dmcn.12246 . 23962350 

  13. 13 Bayón C , Ramírez O , Velasco M , Serrano JI , Lara SL , Martínez-Caballero I , et al ., editors. Pilot study of a novel robotic platform for gait rehabilitation in children with cerebral palsy. 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob); 2016 26–29 6 2016. 

  14. 14 Fasoli SE , Ladenheim B , Mast J , Krebs HI . New Horizons for Robot-Assisted Therapy in Pediatrics. Am J Phys Med Rehabil . 2012 ; 91 ( 11 ). 

  15. 15 Shepherd RB . Cerebral Palsy in Infancy E-Book: Targeted Activity to Optimize Early Growth and Development : London : Elsevier Health Sciences ; 2013 . 

  16. 16 Kwon YH , Kwon JW , Lee MH . Effectiveness of motor sequential learning according to practice schedules in healthy adults; distributed practice versus massed practice . J Phys Ther Sci . 2015 ; 27 ( 3 ): 769 . 10.1589/jpts.27.769 pub.1049141892. 25931727 

  17. 17 Dijkers MP , Akers KG , Dieffenbach S , Galen SS . Systematic Reviews of Clinical Benefits of Exoskeleton Use for Gait and Mobility in Neurologic Disorders: A Tertiary Study . Archives of Physical Medicine and Rehabilitation . 2019 . 10.1016/j.apmr.2019.01.025 30849306 

  18. 18 Electronic Code of Federal Regulations. Physical medicine devices United States: Federal Register; 2020. Available from: https://www.ecfr.gov/cgi-bin/text-idx?SID=9b627fd1822b8fcd87ad660db602de1c&mc=true&node=pt21.8.890&rgn=div5”%5Cl“se21.8.890_13480#se21.8.890_13480 . 

  19. 19 Wu C-H , Mao H-F , Hu J-S , Wang T-Y , Tsai Y-J , Hsu W-L . The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury . Journal of NeuroEngineering and Rehabilitation . 2018 ; 15 ( 1 ): 14 . 10.1186/s12984-018-0355-1 29506530 

  20. 20 Fisahn C , Aach M , Jansen O , Moisi M , Mayadev A , Pagarigan KT , et al . The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review . Global Spine J . 2016 ; 6 ( 8 ): 822 – 41 . Epub 2016/11/18. 10.1055/s-0036-1593805 27853668 

  21. 21 Lajeunesse V , Vincent C , Routhier F , Careau E , Michaud F . Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil Rehabil Assist Technol . 2016 ; 11 ( 7 ): 535 – 47 . Epub 2015/09/05. 10.3109/17483107.2015.1080766 . 26340538 

  22. 22 Louie DR , Eng JJ , Lam T . Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. J Neuroeng Rehabil . 2015 ; 12 : 82 . Epub 2015/10/16. 10.1186/s12984-015-0074-9 26463355 

  23. 23 Miller LE , Zimmermann AK , Herbert WG . Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis . Med Devices (Auckl). 2016 ; 9 : 455 – 66 . Epub 2016/04/05. 10.2147/MDER.S103102 27042146 

  24. 24 Louie DR , Eng JJ . Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review . Journal of NeuroEngineering and Rehabilitation . 2016 ; 13 ( 1 ): 53 . 10.1186/s12984-016-0162-5 27278136 

  25. 25 Shi B , Chen X , Yue Z , Yin S , Weng Q , Zhang X , et al . Wearable Ankle Robots in Post-stroke Rehabilitation of Gait: A Systematic Review. Frontiers in neurorobotics . 2019 ; 13 : 63 –. 10.3389/fnbot.2019.00063 . 31456681 

  26. 26 Shamseer L , Moher D , Clarke M , Ghersi D , Liberati A , Petticrew M , et al . Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ: British Medical Journal . 2015 ; 349 : g7647 . 10.1136/bmj.g7647 25555855 

  27. 27 Archambault PM , van de Belt TH , Grajales Iii FJ , Eysenbach G , Aubin K , Gold I , et al . Wikis and Collaborative Writing Applications in Health Care: A Scoping Review Protocol . JMIR Res Protoc . 2012 ; 1 ( 1 ): e1 . 10.2196/resprot.1993 23612481 

  28. 28 National Health and Medical Research Council . NHMRC additional levels of evidence and grades for recommendations for developers of guidelines . Australia : NHMRC Australian Government ; 2009 [cited 2020 May 23]. 

  29. 29 Law M SD , Pollock N , Letts L , Bosch J , Westmorland M . Critical Review Form–Quantitative Studies . Canada : McMaster University ; 1998 [cited 2020 May 23]. 

  30. 30 Güçhan Z , Mutlu A . The effectiveness of taping on children with cerebral palsy: a systematic review . Dev Med Child Neurol . 2017 ; 59 ( 1 ): 26 – 30 . 10.1111/dmcn.13213 27476831 

  31. 31 Bayon C , Martin-Lorenzo T , Moral-Saiz B , Ramirez O , Perez-Somarriba A , Lerma-Lara S , et al . A robot-based gait training therapy for pediatric population with cerebral palsy: Goal setting, proposal and preliminary clinical implementation . Journal of NeuroEngineering and Rehabilitation . 2018 ; 15 ( 1 ). 10.1186/s12984-018-0412-9 . 30053857 

  32. 32 Lerner ZF , Damiano DL , Bulea TC . A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy . Sci Transl Med . 2017 ; 9 ( 404 ): 23 . 10.1126/scitranslmed.aam9145 . 28835518 

  33. 33 Orekhov G , Fang Y , Luque J , Lerner ZF . Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals with Cerebral Palsy . IEEE Transactions on Neural Systems and Rehabilitation Engineering . 2020 ; 28 ( 2 ): 461 – 7 . 10.1109/TNSRE.2020.2965029 . 31940542 

  34. 34 Smania N , Gandolfi M , Marconi V , Calanca A , Geroin C , Piazza S , et al . Applicability of a new robotic walking aid in a patient with cerebral palsy. Case report . European Journal of Physical and Rehabilitation Medicine . 2012 ; 48 ( 1 ): 147 – 53 . . 22543558 

  35. 35 Hillier S , Grimmer-Somers K , Merlin T , Middleton P , Salisbury J , Tooher R , et al . FORM: An Australian method for formulating and grading recommendations in evidence-based clinical guidelines. BMC Medical Research Methodology . 2011 ; 11 ( 1 ): 23 . 10.1186/1471-2288-11-23 21356039 

  36. 36 Dars S , Uden H , Banwell HA , Kumar S . The effectiveness of non-surgical intervention (Foot Orthoses) for paediatric flexible pes planus: A systematic review: Update . PLoS ONE . 2018 ; 13 ( 2 ): e0193060 . 10.1371/journal.pone.0193060 29451921 

  37. 37 Machotka Z , Scarborough I , Duncan W , Kumar S , Perraton L . Anterior cruciate ligament repair with LARS (ligament advanced reinforcement system): a systematic review . Sports Med Arthrosc Rehabil Ther Technol . 2010 ; 2 : 29 . Epub 2010/12/09. 10.1186/1758-2555-2-29 21138589 

  38. 38 Endo Y , Mutsuzaki H , Mizukami M , Yoshikawa K , Kobayashi Y , Yozu A , et al . Long-term sustained effect of gait training using a hybrid assistive limb on gait stability via prevention of knee collapse in a patient with cerebral palsy: a case report . J Phys Ther Sci . 2018 ; 30 ( 9 ): 1206 – 10 . 10.1589/jpts.30.1206 . 30214126 

  39. 39 Nakagawa S , Mutsuzaki H , Mataki Y , Endo Y , Kamada H , Yamazaki M . Improvement and sustainability of walking ability with hybrid assistive limb training in a patient with cerebral palsy after puberty: A case report . J Phys Ther Sci . 2019 ; 31 ( 8 ): 633 – 7 . 10.1589/jpts.31.633 . 31528000 

  40. 40 Nakagawa S , Mutsuzaki H , Mataki Y , Endo Y , Matsuda M , Yoshikawa K , et al . Newly developed hybrid assistive limb for pediatric patients with cerebral palsy: A case report . J Phys Ther Sci . 2019 ; 31 ( 8 ): 702 – 7 . 10.1589/jpts.31.702 . 31528013 

  41. 41 Nakagawa S , Mutsuzaki H , Mataki Y , Endo Y , Matsuda M , Yoskikawa K , et al . Safety and immediate effects of Hybrid Assistive Limb in children with cerebral palsy: A pilot study . Brain and Development . 2019 . 10.1016/j.braindev.2019.10.003 . 31704189 

  42. 42 Bayon C , Lerma S , Ramirez O , Serrano JI , Del Castillo MD , Raya R , et al . Locomotor training through a novel robotic platform for gait rehabilitation in pediatric population: short report . Journal of NeuroEngineering and Rehabilitation . 2016 ; 13 ( 1 ): 1 – 6 . 10.1186/s12984-016-0206-x . 26728632 

  43. 43 Ueno T , Watanabe H , Kawamoto H , Shimizu Y , Endo A , Shimizu T , et al . Feasibility and safety of Robot Suit HAL treatment for adolescents and adults with cerebral palsy . J Clin Neurosci . 2019 ; 68 : 101 – 4 . 10.1016/j.jocn.2019.07.026 . 31337581 

  44. 44 Takahashi K , Mutsuzaki H , Mataki Y , Yoshikawa K , Matsuda M , Enomoto K , et al . Safety and immediate effect of gait training using a hybrid assistive limb in patients with cerebral palsy . J Phys Ther Sci . 2018 ; 30 ( 8 ): 1009 – 13 . 10.1589/jpts.30.1009 . 30154591 

  45. 45 Mileti I , Taborri J , Rossi S , Petrarca M , Patanè F , Cappa P , editors. Evaluation of the effects on stride-to-stride variability and gait asymmetry in children with Cerebral Palsy wearing the WAKE-up ankle module . 2016 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2016—Proceedings ; 2016 . 

  46. 46 Matsuda M , Mataki Y , Mutsuzaki H , Yoshikawa K , Takahashi K , Enomoto K , et al . Immediate effects of a single session of robot-assisted gait training using Hybrid Assistive Limb (HAL) for cerebral palsy . J Phys Ther Sci . 2018 ; 30 ( 2 ): 207 – 12 . 10.1589/jpts.30.207 . 29545679 

  47. 47 Matsuda M , Iwasaki N , Mataki Y , Mutsuzaki H , Yoshikawa K , Takahashi K , et al . Robot-assisted training using Hybrid Assistive Limb R for cerebral palsy . Brain Dev . 2018 ; 40 ( 8 ): 642 – 8 . 10.1016/j.braindev.2018.04.004 . 29773349 

  48. 48 Mataki Y , Kamada H , Mutsuzaki H , Shimizu Y , Takeuchi R , Mizukami M , et al . Use of Hybrid Assistive Limb (HAL®) for a postoperative patient with cerebral palsy: A case report. BMC Res Notes . 2018 ; 11 ( 1 ). 10.1186/s13104-018-3311-z 29587833 

  49. 49 Kwon SH , Lee BS , Lee HJ , Kim EJ , Lee JA , Yang SP , et al . Energy Efficiency and Patient Satisfaction of Gait With Knee-Ankle-Foot Orthosis and Robot (ReWalk)-Assisted Gait in Patients With Spinal Cord Injury . Ann Rehabil Med . 2020 ; 44 ( 2 ): 131 – 41 . Epub 2020/05/12. 10.5535/arm.2020.44.2.131 32392652 

  50. 50 Arazpour M , Samadian M , Bahramizadeh M , Joghtaei M , Maleki M , Ahmadi Bani M , et al . The efficiency of orthotic interventions on energy consumption in paraplegic patients: a literature review . Spinal Cord . 2015 ; 53 ( 3 ): 168 – 75 . 10.1038/sc.2014.227 25600308 

  51. 51 Lefeber N , Swinnen E , Kerckhofs E . The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: a systematic review. Disability and Rehabilitation: Assistive Technology . 2017 ; 12 ( 7 ): 657 – 71 . 10.1080/17483107.2016.1235620 27762641 

  52. 52 He Y , Eguren D , Luu TP , Contreras-Vidal JL . Risk management and regulations for lower limb medical exoskeletons: a review . Med Devices (Auckl). 2017 ; 10 : 89 – 107 . 10.2147/MDER.S107134 . 28533700 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로