$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Rapid and Non-Destructive Monitoring of Moisture Content in Livestock Feed Using a Global Hyperspectral Model 원문보기

Animals an open access journal from MDPI, v.11 no.5, 2021년, pp.1299 -   

Uyeh, Daniel Dooyum (Department of Bio-Industrial Machinery Engineering, Kyungpook National University, Daegu 41566, Korea) ,  Kim, Juntae (uyehdooyum@gmail.com (D.D.U.)) ,  Lohumi, Santosh (woosm7571@gmail.com (S.W.)) ,  Park, Tusan (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea) ,  Cho, Byoung-Kwan (biosch94@gmail.com (J.K.)) ,  Woo, Seungmin (Santosh.sanny123@gmail.com (S.L.)) ,  Lee, Won Suk (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea) ,  Ha, Yushin (biosch94@gmail.com (J.K.))

Abstract AI-Helper 아이콘AI-Helper

Simple SummaryMoisture content is an important parameter for monitoring the quality of feed and feed materials as its established ranges serve as markers for safe storage, mixing, and feeding animals. The moisture content of feed materials changes very rapidly and necessitates rapid measurement. Cur...

Keyword

참고문헌 (33)

  1. 1. Park Y.W. Moisture and water activity Handb. Process. Meats Poult. Anal. 2008 35 67 10.1201/9781420045338.ch3 

  2. 2. Woo S.M. Uyeh D.D. Kim J. Ha Y.S. A fermentation and storage TMR model for dairy cattle Eng. Agric. Environ. Food 2019 12 89 97 10.1016/j.eaef.2018.10.001 

  3. 3. Ha Y.-S. Hong D.-H. Park K.-K. Modeling of a small group scale TMR plant for beef cattle and dairy farm in Korea (I)-Development of TMR plant model J. Biosyst. Eng. 2009 34 342 350 10.5307/JBE.2009.34.5.342 

  4. 4. Pardo E. Marın S. Sanchis V. Ramos A. Prediction of fungal growth and ochratoxin A production by Aspergillus ochraceus on irradiated barley grain as influenced by temperature and water activity Int. J. Food Microbiol. 2004 95 79 88 10.1016/j.ijfoodmicro.2004.02.003 15240077 

  5. 5. Los A. Ziuzina D. Bourke P. Current and future technologies for microbiological decontamination of cereal grains J. Food Sci. 2018 83 1484 1493 10.1111/1750-3841.14181 29799123 

  6. 6. Rezaei F. Vandergheynst J.S. Critical moisture content for microbial growth in dried food-processing residues J. Sci. Food Agric. 2010 90 2000 2005 10.1002/jsfa.4044 20597097 

  7. 7. Wei X. Su S. Yue Y. Wang W. He L. Li H. Ota Y. Electric Vehicles Charging Scheduling Strategy Considering the Uncertainty of Photovoltaic Output Proceedings of the IOP Conference Series: Materials Science and Engineering Shanghai, China 24–26 March 2017 012006 

  8. 8. Felton C. DeVries T. Effect of water addition to a total mixed ration on feed temperature, feed intake, sorting behavior, and milk production of dairy cows J. Dairy Sci. 2010 93 2651 2660 10.3168/jds.2009-3009 20494174 

  9. 9. Miller-Cushon E. De Vries T. Effect of dietary dry matter concentration on the sorting behavior of lactating dairy cows fed a total mixed ration J. Dairy Sci. 2009 92 3292 3298 10.3168/jds.2008-1772 19528606 

  10. 10. Ishimwe R. Abutaleb K. Ahmed F. Applications of thermal imaging in agriculture—A review Adv. Remote Sens. 2014 3 128 10.4236/ars.2014.33011 

  11. 11. Kandala C.V. Butts C.L. Nelson S.O. Capacitance sensor for nondestructive measurement of moisture content in nuts and grain IEEE Trans. Instrum. Meas. 2007 56 1809 1813 10.1109/TIM.2007.903575 

  12. 12. Abegaonkar M.P. Karekar R. Aiyer R. Miniaturized nondestructive microwave sensor for chickpea moisture measurement Rev. Sci. Instrum. 1999 70 3145 3149 10.1063/1.1149877 

  13. 13. Ghulam A. Li Z.-L. Qin Q. Yimit H. Wang J. Estimating crop water stress with ETM + NIR and SWIR data Agric. For. Meteorol. 2008 148 1679 1695 10.1016/j.agrformet.2008.05.020 

  14. 14. Jafari A. Connolly V. Frolich A. Walsh E. A note on estimation of quality parameters in perennial ryegrass by near infrared reflectance spectroscopy Ir. J. Agric. Food Res. 2003 42 293 299 

  15. 15. Maertens K. Reyns P. De Baerdemaeker J. On-line measurement of grain quality with NIR technology Trans. ASAE 2004 47 1135 10.13031/2013.16545 

  16. 16. Ahn J. Kil D.Y. Kong C. Kim B. Comparison of oven-drying methods for determination of moisture content in feed ingredients Asian Australas. J. Anim. Sci. 2014 27 1615 10.5713/ajas.2014.14305 25358322 

  17. 17. Lohumi S. Lee S. Lee H. Cho B.-K. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration Trends Food Sci. Technol. 2015 46 85 98 10.1016/j.tifs.2015.08.003 

  18. 18. Hamblin M.R. Avci P. Gupta G.K. Chapter 1—Introduction to Imaging in Dermatology Imaging in Dermatology Hamblin M.R. Avci P. Gupta G.K. Academic Press Boston, MA, USA 2016 1 4 10.1016/B978-0-12-802838-4.00001-7 

  19. 19. Rahman A. Faqeerzada M.A. Cho B.-K. Hyperspectral imaging for predicting the allicin and soluble solid content of garlic with variable selection algorithms and chemometric models J. Sci. Food Agric. 2018 98 4715 4725 10.1002/jsfa.9006 29542139 

  20. 20. Li L. Zhang Q. Huang D. A review of imaging techniques for plant phenotyping Sensors 2014 14 20078 20111 10.3390/s141120078 25347588 

  21. 21. Verboven S. Hubert M. Goos P. Robust preprocessing and model selection for spectral data J. Chemom. 2012 26 282 289 10.1002/cem.2446 

  22. 22. Pullanagari R.R. Kereszturi G. Yule I. Integrating airborne hyperspectral, topographic, and soil data for estimating pasture quality using recursive feature elimination with random forest regression Remote Sens. 2018 10 1117 10.3390/rs10071117 

  23. 23. El Masry G. Wang N. Vigneault C. Qiao J. El Sayed A. Early detection of apple bruises on different background colors using hyperspectral imaging LWT Food Sci. Technol. 2008 41 337 345 10.1016/j.lwt.2007.02.022 

  24. 24. Rinnan Å. Van Den Berg F. Engelsen S.B. Review of the most common pre-processing techniques for near-infrared spectra TrAC Trends Anal. Chem. 2009 28 1201 1222 10.1016/j.trac.2009.07.007 

  25. 25. Wold M. Physical Model Study of Caving under Massive Sandstone Roof Conditions at Moura, Queensland Division of Geomechanics, IEER Mt. Waverley, Australia 1984 

  26. 26. Kavdir I. Buyukcan M.B. Lu R. Kocabiyik H. Seker M. Prediction of olive quality using FT-NIR spectroscopy in reflectance and transmittance modes Biosyst. Eng. 2009 103 304 312 10.1016/j.biosystemseng.2009.04.014 

  27. 27. Zhou G.X. Ge Z. Dorwart J. Izzo B. Kukura J. Bicker G. Wyvratt J. Determination and differentiation of surface and bound water in drug substances by near infrared spectroscopy J. Pharm. Sci. 2003 92 1058 1065 10.1002/jps.10375 12712426 

  28. 28. Chen L. Yang Z. Han L. A review on the use of near-infrared spectroscopy for analyzing feed protein materials Appl. Spectrosc. Rev. 2013 48 509 522 10.1080/05704928.2012.756403 

  29. 29. Uyeh D.D. Ha Y. Park T. Animal feed formulation: Rapid and non-destructive measurement of components from waste by-products Anim. Feed Sci. Technol. 2021 274 114848 10.1016/j.anifeedsci.2021.114848 

  30. 30. Workman J. Weyer L. Practical Guide to Interpretive Near-Infrared Spectroscopy CRC Press Boca Raton, FL, USA 2008 

  31. 31. Kandpal L.M. Lee H. Kim M.S. Mo C. Cho B.-K. Hyperspectral reflectance imaging technique for visualization of moisture distribution in cooked chicken breast Sensors 2013 13 13289 13300 10.3390/s131013289 24084119 

  32. 32. Lin L. He Y. Xiao Z. Zhao K. Dong T. Nie P. Rapid-detection sensor for rice grain moisture based on NIR spectroscopy Appl. Sci. 2019 9 1654 10.3390/app9081654 

  33. 33. Uyeh D.D. Mallipeddi R. Pamulapati T. Park T. Kim J. Woo S. Ha Y. Interactive livestock feed ration optimization using evolutionary algorithms Comput. Electron. Agric. 2018 155 1 11 10.1016/j.compag.2018.08.031 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로