$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Microbial Composition of SCOBY Starter Cultures Used by Commercial Kombucha Brewers in North America 원문보기

Microorganisms, v.9 no.5, 2021년, pp.1060 -   

Harrison, Keisha (Department of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA) ,  Curtin, Chris (keisha.harrison@oregonstate.edu)

Abstract AI-Helper 아이콘AI-Helper

Kombucha fermentation is initiated by transferring a solid-phase cellulosic pellicle into sweetened tea and allowing the microbes that it contains to initiate the fermentation. This pellicle, commonly referred to as a symbiotic culture of bacteria and yeast (SCOBY), floats to the surface of the ferm...

주제어

참고문헌 (96)

  1. 1. Teoh A.L. Heard G. Cox J. Yeast ecology of Kombucha fermentation Int. J. Food Microbiol. 2004 95 119 126 10.1016/j.ijfoodmicro.2003.12.020 15282124 

  2. 2. Malba?a R.V. Lonar E.S. Vitas J.S. anadanovi-Brunet J.M. Influence of starter cultures on the antioxidant activity of kombucha beverage Food Chem. 2011 127 1727 1731 10.1016/j.foodchem.2011.02.048 

  3. 3. Yamada Y. Yukphan P. Vu H.T.L. Muramatsu Y. Ochaikul D. Nakagawa Y. Subdivision of the Genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: The Proposal of Komagataeibacter Gen. Nov., for Strains Accommodated to the Gluconacetobacter Xylinus Group in the α-Proteobacteria Ann. Microbiol. 2012 62 849 859 10.1007/s13213-011-0288-4 

  4. 4. Reva O.N. Zaets I.E. Ovcharenko L.P. Kukharenko O.E. Shpylova S.P. Podolich O.V. de Vera J.-P. Kozyrovska N.O. Metabarcoding of the kombucha microbial community grown in different microenvironments AMB Express 2015 5 124 10.1186/s13568-015-0124-5 26061774 

  5. 5. De Filippis F. Troise A.D. Vitaglione P. Ercolini D. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during kombucha tea fermentation Food Microbiol. 2018 73 11 16 10.1016/j.fm.2018.01.008 29526195 

  6. 6. Machado R.T.A. Gutierrez J. Tercjak A. Trovatti E. Uahib F.G.M. de Moreno G.P. Nascimento A.P. Berreta A.A. Ribeiro S.J.L. Barud H.S. komagataeibacter rhaeticus as an alternative bacteria for cellulose production Carbohydr. Polym. 2016 152 841 849 10.1016/j.carbpol.2016.06.049 27516336 

  7. 7. Semjonovs P. Ruklisha M. Paegle L. Saka M. Treimane R. Skute M. Rozenberga L. Vikele L. Sabovics M. Cleenwerck I. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha Appl. Microbiol. Biotechnol. 2017 101 1003 1012 10.1007/s00253-016-7761-8 27678116 

  8. 8. Gaggia F. Baffoni L. Galiano M. Nielsen D.S. Jakobsen R.R. Castro-Mejia J.L. Bosi S. Truzzi F. Musumeci F. Dinelli G. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity Nutrients 2018 11 1 10.3390/nu11010001 30577416 

  9. 9. dos Santos R.A.C. Berretta A.A. Barud H.d.S. Ribeiro S.J.L. Gonzalez-Garcia L.N. Zucchi T.D. Goldman G.H. Riano-Pachon D.M. Draft Genome Sequence of Komagataeibacter Intermedius Strain AF2, a Producer of Cellulose, Isolated from Kombucha Tea Genome Announc. 2015 3 6 10.1128/genomeA.01404-15 

  10. 10. Sievers M. Lanini C. Weber A. Schuler-Schmid U. Teuber M. Microbiology and Fermentation Balance in a Kombucha Beverage Obtained from a Tea Fungus Fermentation Syst. Appl. Microbiol. 1995 18 590 594 10.1016/S0723-2020(11)80420-0 

  11. 11. Blanc P.J. Characterization of the tea fungus metabolites Biotechnol. Lett. 1996 18 139 142 10.1007/BF00128667 

  12. 12. Balentine D.A. Wiseman S.A. Bouwens L.C. The chemistry of tea flavonoids Crit. Rev. Food Sci. Nutr. 1997 37 693 704 10.1080/10408399709527797 9447270 

  13. 13. Liu C.-H. Hsu W.-H. Lee F.-L. Liao C.-C. The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation Food Microbiol. 1996 13 407 415 10.1006/fmic.1996.0047 

  14. 14. Marsh A.J. O’Sullivan O. Hill C. Ross R.P. Cotter P.D. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples Food Microbiol. 2014 38 171 178 10.1016/j.fm.2013.09.003 24290641 

  15. 15. Chen C. Liu B.Y. Changes in major components of tea fungus metabolites during prolonged fermentation J. Appl. Microbiol. 2000 89 834 839 10.1046/j.1365-2672.2000.01188.x 11119158 

  16. 16. Coton M. Pawtowski A. Taminiau B. Burgaud G. Deniel F. Coulloumme-Labarthe L. Fall A. Daube G. Coton E. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods FEMS Microbiol. Ecol. 2017 93 048 10.1093/femsec/fix048 

  17. 17. Chakravorty S. Bhattacharya S. Chatzinotas A. Chakraborty W. Bhattacharya D. Gachhui R. Kombucha tea fermentation: Microbial and biochemical dynamics Int. J. Food Microbiol. 2016 220 63 72 10.1016/j.ijfoodmicro.2015.12.015 26796581 

  18. 18. Mayser P. Fromme S. Leitzmann G. Grunder K. The yeast spectrum of the ‘tea fungus Kombucha’ Mycoses 1995 38 289 295 10.1111/j.1439-0507.1995.tb00410.x 8559192 

  19. 19. Greenwalt C.J. Steinkraus K.H. Ledford R.A. Kombucha, the Fermented Tea: Microbiology, Composition, and Claimed Health Effects J. Food Prot. 2000 63 976 981 10.4315/0362-028X-63.7.976 10914673 

  20. 20. Ben Taheur F. Mansour C. Ben Jeddou K. Machreki Y. Kouidhi B. Abdulhakim J.A. Chaieb K. Aflatoxin B1 degradation by microorganisms isolated from Kombucha culture Toxicon 2020 179 76 83 10.1016/j.toxicon.2020.03.004 32345454 

  21. 21. Villarreal-Soto S.A. Beaufort S. Bouajila J. Souchard J.-P. Taillandier P. Understanding Kombucha Tea Fermentation: A Review J. Food Sci. 2018 83 580 588 10.1111/1750-3841.14068 29508944 

  22. 22. Tran T. Grandvalet C. Verdier F. Martin A. Alexandre H. Tourdot-Marechal R. Microbial Dynamics between Yeasts and Acetic Acid Bacteria in Kombucha: Impacts on the Chemical Composition of the Beverage Foods 2020 9 963 10.3390/foods9070963 

  23. 23. Pinto L. Malfeito-Ferreira M. Quintieri L. Silva A.C. Baruzzi F. Growth and metabolite production of a grape sour rot yeast-bacterium consortium on different carbon sources Int. J. Food Microbiol. 2019 296 65 74 10.1016/j.ijfoodmicro.2019.02.022 30851642 

  24. 24. Margulies M. Egholm M. Altman W.E. Attiya S. Bader J.S. Bemben L.A. Berka J. Braverman M.S. Chen Y.-J. Chen Z. Genome sequencing in microfabricated high-density picolitre reactors Nature 2005 437 376 380 10.1038/nature03959 16056220 

  25. 25. Wolfe B.E. Button J.E. Santarelli M. Dutton R.J. Cheese Rind Communities Provide Tractable Systems for in Situ and in Vitro Studies of Microbial Diversity Cell 2014 158 422 433 10.1016/j.cell.2014.05.041 25036636 

  26. 26. Patra J.K. Das G. Paramithiotis S. Shin H.-S. Kimchi and Other Widely Consumed Traditional Fermented Foods of Korea: A Review Front. Microbiol. 2016 7 1493 10.3389/fmicb.2016.01493 27733844 

  27. 27. Filippis F.D. Parente E. Ercolini D. Metagenomics insights into food fermentations Microb. Biotechnol. 2017 10 91 102 10.1111/1751-7915.12421 27709807 

  28. 28. Cooke A.C. Nello A.V. Ernst R.K. Schertzer J.W. Analysis of Pseudomonas Aeruginosa Biofilm Membrane Vesicles Supports Multiple Mechanisms of Biogenesis PLoS ONE 2019 14 e0212275 10.1371/journal.pone.0212275 30763382 

  29. 29. Unban K. Khatthongngam N. Pattananandecha T. Saenjum C. Shetty K. Khanongnuch C. Microbial Community Dynamics During the Non-Filamentous Fungi Growth-Based Fermentation Process of Miang, a Traditional Fermented Tea of North Thailand and Their Product Characterizations Front. Microbiol. 2020 11 10.3389/fmicb.2020.01515 

  30. 30. De Gregoris T.B. Aldred N. Clare A.S. Burgess J.G. Improvement of Phylum- and Class-Specific Primers for Real-Time PCR Quantification of Bacterial Taxa J. Microbiol. Methods 2011 86 351 356 10.1016/j.mimet.2011.06.010 21704084 

  31. 31. Hierro N. Esteve-Zarzoso B. Gonzalez A. Mas A. Guillamon J.M. Real-Time Quantitative PCR (QPCR) and Reverse Transcription-QPCR for Detection and Enumeration of Total Yeasts in Wine Appl. Environ. Microbiol. 2006 72 7148 7155 10.1128/AEM.00388-06 17088381 

  32. 32. Comeau A.M. Douglas G.M. Langille M.G.I. Microbiome Helper: A Custom and Streamlined Workflow for Microbiome Research mSystems 2017 2 e00127 10.1128/mSystems.00127-16 

  33. 33. Bokulich N.A. Mills D.A. Improved Selection of Internal Transcribed Spacer-Specific Primers Enables Quantitative, Ultra-High-Throughput Profiling of Fungal Communities Appl. Environ. Microbiol. 2013 79 2519 2526 10.1128/AEM.03870-12 23377949 

  34. 34. Bolyen E. Rideout J.R. Dillon M.R. Bokulich N.A. Abnet C.C. Al-Ghalith G.A. Alexander H. Alm E.J. Arumugam M. Asnicar F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 Nat. Biotechnol. 2019 37 852 857 10.1038/s41587-019-0209-9 31341288 

  35. 35. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads EMBnet. J. 2011 17 10 12 10.14806/ej.17.1.200 

  36. 36. Callahan B.J. Wong J. Heiner C. Oh S. Theriot C.M. Gulati A.S. McGill S.K. Dougherty M.K. High-Throughput Amplicon Sequencing of the Full-Length 16S RRNA Gene with Single-Nucleotide Resolution Nucl. Acids Res. 2019 47 e103 10.1093/nar/gkz569 31269198 

  37. 37. De Santis T.Z. Hugenholtz P. Larsen N. Rojas M. Brodie E.L. Keller K. Huber T. Dalevi D. Hu P. Andersen G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB Appl. Environ. Microbiol. 2006 72 5069 5072 10.1128/AEM.03006-05 16820507 

  38. 38. Abarenkov K. Nilsson R.H. Larsson K.-H. Alexander I.J. Eberhardt U. Erland S. Høiland K. Kjøller R. Larsson E. Pennanen T. The UNITE database for molecular identification of fungi―Recent updates and future perspectives New Phytol. 2010 186 281 285 10.1111/j.1469-8137.2009.03160.x 20409185 

  39. 39. Hall M. Beiko R.G. 16S rRNA Gene Analysis with QIIME2 Microbiome Analysis: Methods and Protocols Beiko R.G. Hsiao W. Parkinson J. Springer New York, NY, USA 2018 113 129 

  40. 40. Pedregosa F. Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. Blondel M. Prettenhofer P. Weiss R. Dubourg V. Scikit-Learn: Machine Learning in Python J. Mach. Learn Res. 2011 12 2825 2830 

  41. 41. Altschul S.F. Gish W. Miller W. Myers E.W. Lipman D.J. Basic Local Alignment Search Tool J. Mol. Biol. 1990 215 403 410 10.1016/S0022-2836(05)80360-2 2231712 

  42. 42. McMurdie P.J. Holmes S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data PLoS ONE 2013 8 e61217 10.1371/journal.pone.0061217 23630581 

  43. 43. Wickham H. Getting Started with ggplot2 ggplot2: Elegant Graphics for Data Analysis Wickham H. Springer Cham, Switzerland 2016 11 31 

  44. 44. Lozupone C. Hamady M. Knight R. UniFrac―An Online Tool for Comparing Microbial Community Diversity in a Phylogenetic Context BMC Bioinf. 2006 7 1 14 10.1186/1471-2105-7-371 16893466 

  45. 45. Foster Z.S.L. Sharpton T.J. Grunwald N.J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data PLoS Comput. Biol. 2017 13 e1005404 10.1371/journal.pcbi.1005404 28222096 

  46. 46. Oksanen J. Blanchet F.G. Kindt R. Legendre P. Minchin P. O’hara R.B. Simpson G. Community Ecology Package. R Package Version 2.0 2013 Available online: http://sortie-admin.readyhosting.com/lme/R%20Packages/vegan.pdf (accessed on 9 April 2019) 

  47. 47. Bolger A.M. Lohse M. Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data Bioinformatics 2014 30 2114 2120 10.1093/bioinformatics/btu170 24695404 

  48. 48. Langmead B. Salzberg S.L. Fast gapped-read alignment with Bowtie 2 Nat. Methods 2012 9 357 359 10.1038/nmeth.1923 22388286 

  49. 49. Wood D.E. Lu J. Langmead B. Improved metagenomic analysis with Kraken 2 Genome Biol. 2019 20 1 13 10.1186/s13059-019-1891-0 30606230 

  50. 50. Ondov B.D. Bergman N.H. Phillippy A.M. Interactive metagenomic visualization in a Web browser BMC Bioinform. 2011 12 385 10.1186/1471-2105-12-385 

  51. 51. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM arXiv 2013 1303.3997 

  52. 52. Li H. Handsaker B. Wysoker A. Fennell T. Ruan J. Homer N. Marth G. Abecasis G. Durbin R. 1000 Genome Project Data Processing Subgroup the Sequence Alignment/Map Format and SAMtools Bioinformatics 2009 25 2078 2079 10.1093/bioinformatics/btp352 19505943 

  53. 53. Spitaels F. Wieme A.D. Janssens M. Aerts M. Van Landschoot A. De Vuyst L. Vandamme P. The microbial diversity of an industrially produced lambic beer shares members of a traditionally produced one and reveals a core microbiota for lambic beer fermentation Food Microbiol. 2015 49 23 32 10.1016/j.fm.2015.01.008 25846912 

  54. 54. Spitaels F. Wieme A.D. Janssens M. Aerts M. Daniel H.-M. Landschoot A.V. Vuyst L.D. Vandamme P. The Microbial Diversity of Traditional Spontaneously Fermented Lambic Beer PLoS ONE 2014 9 e95384 10.1371/journal.pone.0095384 24748344 

  55. 55. Domizio P. Lencioni L. Ciani M. Di Blasi S. Pontremolesi C. Sabatelli M.P. Spontaneous and inoculated yeast populations dynamics and their effect on organoleptic characters of vinsanto wine under different process conditions Int. J. Food Microbiol. 2007 115 281 289 10.1016/j.ijfoodmicro.2006.10.052 17307268 

  56. 56. Combina M. Elia A. Mercado L. Catania C. Ganga A. Martinez C. Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina Int. J. Food Microbiol. 2005 99 237 243 10.1016/j.ijfoodmicro.2004.08.017 15808358 

  57. 57. Di Maro E. Ercolini D. Coppola S. Yeast dynamics during spontaneous wine fermentation of the Catalanesca grape Int. J. Food Microbiol. 2007 117 201 210 10.1016/j.ijfoodmicro.2007.04.007 17512625 

  58. 58. Abriouel H. Martin-Platero A. Maqueda M. Valdivia E. Martinez-Bueno M. Biodiversity of the microbial community in a Spanish farmhouse cheese as revealed by culture-dependent and culture-independent methods Int. J. Food Microbiol. 2008 127 200 208 10.1016/j.ijfoodmicro.2008.07.004 18692931 

  59. 59. Marino M. Maifreni M. Rondinini G. Microbiological Characterization of Artisanal Montasio Cheese: Analysis of Its Indigenous Lactic Acid Bacteria FEMS Microbiol. Lett. 2003 229 133 140 10.1016/S0378-1097(03)00816-4 14659553 

  60. 60. Podolich O. Kukharenko O. Haidak A. Zaets I. Zaika L. Storozhuk O. Palchikovska L. Orlovska I. Reva O. Borisova T. Multimicrobial Kombucha Culture Tolerates Mars-Like Conditions Simulated on Low Earth Orbit Astrobiology 2019 19 183 196 10.1089/ast.2017.1746 30484685 

  61. 61. Villarreal-Soto S.A. Bouajila J. Pace M. Leech J. Cotter P.D. Souchard J.-P. Taillandier P. Beaufort S. Metabolome-Microbiome Signatures in the Fermented Beverage, Kombucha Int. J. Food Microbiol. 2020 333 108778 10.1016/j.ijfoodmicro.2020.108778 32731153 

  62. 62. Herald P.J. Zottola E.A. Attachment of Listeria Monocytogenes to Stainless Steel Surfaces at Various Temperatures and pH Values J. Food Sci. 1988 53 1549 1562 10.1111/j.1365-2621.1988.tb09321.x 

  63. 63. De Roos J. Vandamme P. De Vuyst L. Wort Substrate Consumption and Metabolite Production During Lambic Beer Fermentation and Maturation Explain the Successive Growth of Specific Bacterial and Yeast Species Front. Microbiol. 2018 9 2763 10.3389/fmicb.2018.02763 30510547 

  64. 64. Gorski L. Palumbo J.D. Mandrell R.E. Attachment of Listeria Monocytogenes to Radish Tissue is Dependent upon Temperature and Flagellar Motility Appl. Environ. Microbiol. 2003 69 258 266 10.1128/AEM.69.1.258-266.2003 12514003 

  65. 65. Moltz A.G. Martin S.E. Formation of Biofilms by Listeria monocytogenes under Various Growth Conditions J. Food Prot. 2005 68 92 97 10.4315/0362-028X-68.1.92 15690808 

  66. 66. Folsom J.P. Siragusa G.R. Frank J.F. Formation of Biofilm at Different Nutrient Levels by Various Genotypes of Listeria monocytogenes J. Food Prot. 2006 69 826 834 10.4315/0362-028X-69.4.826 16629025 

  67. 67. Aguilar-Uscanga B. Francois J.M. A Study of the Yeast Cell Wall Composition and Structure in Response to Growth Conditions and Mode of Cultivation Lett. Appl. Microbiol. 2003 37 268 274 10.1046/j.1472-765X.2003.01394.x 12904232 

  68. 68. Molina-Ramirez C. Castro M. Osorio M. Torres-Taborda M. Gomez B. Zuluaga R. Gomez C. Ganan P. Rojas O.J. Castro C. Effect of Different Carbon Sources on Bacterial Nanocellulose Production and Structure Using the Low pH Resistant Strain Komagataeibacter Medellinensis Materials 2017 10 639 10.3390/ma10060639 

  69. 69. Laureys D. Aerts M. Vandamme P. De Vuyst L. Oxygen and diverse nutrients influence the water kefir fermentation process Food Microbiol. 2018 73 351 361 10.1016/j.fm.2018.02.007 29526223 

  70. 70. Lugli G.A. Milani C. Mancabelli L. Turroni F. Sinderen D. Ventura M. A microbiome reality check: Limitations of in silico-based metagenomic approaches to study complex bacterial communities Environ. Microbiol. Rep. 2019 11 840 847 10.1111/1758-2229.12805 31668006 

  71. 71. Sternes P.R. Lee D. Kutyna D.R. Borneman A.R. A combined meta-barcoding and shotgun metagenomic analysis of spontaneous wine fermentation GigaScience 2017 6 040 10.1093/gigascience/gix040 

  72. 72. Arıkan M. Mitchell A.L. Finn R.D. Gurel F. Microbial composition of Kombucha determined using amplicon sequencing and shotgun metagenomics J. Food Sci. 2020 85 455 464 10.1111/1750-3841.14992 31957879 

  73. 73. Csoma H. Sipiczki M. Taxonomic Reclassification of Candida Stellata Strains Reveals Frequent Occurrence of Candida Zemplinina in Wine Fermentation FEMS Yeast Res. 2008 8 328 336 10.1111/j.1567-1364.2007.00339.x 18179579 

  74. 74. Tu C. Hu W. Tang S. Meng L. Huang Z. Xu X. Xia X. Azi F. Dong M. Isolation and identification of Starmerella davenportii strain Do18 and its application in black tea beverage fermentation Food Sci. Hum. Wellness 2020 9 355 362 10.1016/j.fshw.2020.04.010 

  75. 75. Chen C. Liu B. Studies in Microbiological Quality and Survival of Candida Albicans in the Tea Fungi J. Agric. Forest. 1997 46 53 64 

  76. 76. Hesseltine C.W. A Millennium of Fungi, Food, and Fermentation Mycologia 1965 57 149 197 10.1080/00275514.1965.12018201 14261924 

  77. 77. Watawana M. Jayawardena N. Gunawardhana C. Viduranga Y. Health, Wellness, and Safety Aspects of the Consumption of Kombucha J. Chem. 2015 2015 1 11 10.1155/2015/591869 

  78. 78. Bokulich N.A. Thorngate J.H. Richardson P.M. Mills D.A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate Proc. Natl. Acad. Sci. USA 2014 111 E139 E148 10.1073/pnas.1317377110 24277822 

  79. 79. Shayevitz A. Harrison K. Curtin C. Barrel-Induced Variation in the Microbiome and Mycobiome of Aged Sour Ale and Imperial Porter Beer J. Am. Soc. Brew. Chem. 2020 79 1 8 10.1080/03610470.2020.1795607 

  80. 80. Muhammad M.H. Idris A.L. Fan X. Guo Y. Yu Y. Jin X. Qiu J. Guan X. Huang T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches Front. Microbiol. 2020 11 928 10.3389/fmicb.2020.00928 32508772 

  81. 81. Dang H. Lovell C.R. Microbial Surface Colonization and Biofilm Development in Marine Environments Microbiol. Mol. Biol. Rev. 2016 80 91 138 10.1128/MMBR.00037-15 26700108 

  82. 82. Landis E.A. Oliverio A.M. McKenney E.A. Nichols L.M. Kfoury N. Biango-Daniels M. Shell L.K. Madden A.A. Shapiro L. Sakunala S. The diversity and function of sourdough starter microbiomes eLife 2021 10 e61644 10.7554/eLife.61644 33496265 

  83. 83. Drysdale G.S. Fleet G.H. The Growth and Survival of Acetic Acid Bacteria in Wines at Different Concentrations of Oxygen Am. J. Enol. Vitic. 1989 40 99 105 

  84. 84. Du Toit W. Pretorius I. Lonvaud-Funel A. The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine J. Appl. Microbiol. 2005 98 862 871 10.1111/j.1365-2672.2004.02549.x 15752332 

  85. 85. Cvetkovi D. Markov S. Djuri M. Savi D. Velianski A. Specific interfacial area as a key variable in scaling-up Kombucha fermentation J. Food Eng. 2008 85 387 392 10.1016/j.jfoodeng.2007.07.021 

  86. 86. Czerny M. Christlbauer M. Christlbauer M. Fischer A. Granvogl M. Hammer M. Hartl C. Hernandez N.M. Schieberle P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions Eur. Food Res. Technol. 2008 228 265 273 10.1007/s00217-008-0931-x 

  87. 87. Meilgaard M.C. Individual differences in sensory threshold for aroma chemicals added to beer Food Qual. Prefer. 1993 4 153 167 10.1016/0950-3293(93)90158-3 

  88. 88. Hartwig P. McDaniel M.R. Flavor Characteristics of Lactic, Malic, Citric, and Acetic Acids at Various PH Levels J. Food Sci. 1995 60 384 388 10.1111/j.1365-2621.1995.tb05678.x 

  89. 89. Freer S. Dien B. Matsuda S. Production of acetic acid by Dekkera/Brettanomyces yeasts under conditions of constant pH World J. Microbiol. Biotechnol. 2003 19 101 105 10.1023/A:1022592810405 

  90. 90. Neta E.R.D.C. Johanningsmeier S.D. McFeeters R.F. The Chemistry and Physiology of Sour Taste―A Review J. Food Sci. 2007 72 R33 R38 10.1111/j.1750-3841.2007.00282.x 17995849 

  91. 91. Drysdale G.S. Fleet G.H. Acetic Acid Bacteria in Winemaking: A Review Am. J. Enol. Vitic. 1988 39 143 154 

  92. 92. Ho V. Zhao J. Fleet G. The effect of lactic acid bacteria on cocoa bean fermentation Int. J. Food Microbiol. 2015 205 54 67 10.1016/j.ijfoodmicro.2015.03.031 25889523 

  93. 93. Capozzi V. Garofalo C. Chiriatti M.A. Grieco F. Spano G. Microbial terroir and food innovation: The case of yeast biodiversity in wine Microbiol. Res. 2015 181 75 83 10.1016/j.micres.2015.10.005 26521127 

  94. 94. Styger G. Prior B. Bauer F.F. Wine flavor and aroma J. Ind. Microbiol. Biotechnol. 2011 38 1145 1159 10.1007/s10295-011-1018-4 21786136 

  95. 95. Pinto L. Baruzzi F. Cocolin L. Malfeito-Ferreira M. Emerging technologies to control Brettanomyces spp. in wine: Recent advances and future trends Trends Food Sci. Technol. 2020 99 88 100 10.1016/j.tifs.2020.02.013 

  96. 96. Serra-Colomer M. Funch B. Forster J. The raise of Brettanomyces yeast species for beer production Curr. Opin. Biotechnol. 2019 56 30 35 10.1016/j.copbio.2018.07.009 30173102 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로