$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants 원문보기

Nature communications, v.12 no.1, 2021년, pp.3991 -   

Jalkanen, Pinja (Institute of Biomedicine, University of Turku, Turku, Finland) ,  Kolehmainen, Pekka (Institute of Biomedicine, University of Turku, Turku, Finland) ,  Häkkinen, Hanni K. (Department of Infectious Diseases, Meilahti Vaccination Research Center, MeVac, Helsinki University Hospital and University of Helsinki, Helsinki, Finland) ,  Huttunen, Moona (Institute of Biomedicine, University of Turku, Turku, Finland) ,  Tähtinen, Paula A. (Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland) ,  Lundberg, Rickard (Institute of Biomedicine, University of Turku, Turku, Finland) ,  Maljanen, Sari (Institute of Biomedicine, University of Turku, Turku, Finland) ,  Reinholm, Arttu (Institute of Biomedicine, University of Turku, Turku, Finland) ,  Tauriainen, Sisko (Institute of Biomedicine, University of Turku, Turku, Finland) ,  Pakkanen, Sari H. (Department of Infectious Diseases, Meilahti Vaccination Research Center, MeVac, Helsinki University Hospital and University of Helsinki, Helsinki, Finland) ,  Levonen, Iris (Department of Infectious Diseases, Meilahti Vaccination Research Center, MeVac, Helsinki University Hospital and Univer) ,  Nousiainen, Arttu ,  Miller, Taru ,  Välimaa, Hanna ,  Ivaska, Lauri ,  Pasternack, Arja ,  Naves, Rauno ,  Ritvos, Olli ,  Österlund, Pamela ,  Kuivanen, Suvi ,  Smura, Teemu ,  Hepojoki, Jussi ,  Vapalahti, Olli ,  Lempainen, Johanna ,  Kakkola, Laura ,  Kantele, Anu ,  Julkunen, Ilkka

Abstract AI-Helper 아이콘AI-Helper

As SARS-CoV-2 has been circulating for over a year, dozens of vaccine candidates are under development or in clinical use. The BNT162b2 mRNA COVID-19 vaccine induces spike protein-specific neutralizing antibodies associated with protective immunity. The emergence of the B.1.1.7 and B.1.351 variants ...

참고문헌 (49)

  1. 1. Dong E Du H Gardner L An interactive web-based dashboard to track COVID-19 in real time Lancet Infect. Dis. 2020 20 533 534 10.1016/S1473-3099(20)30120-1 32087114 

  2. 2. Dong Y A systematic review of SARS-CoV-2 vaccine candidates Signal Transduct. Target. Ther. 2020 5 237 10.1038/s41392-020-00352-y 33051445 

  3. 3. Okba NMA Severe acute respiratory syndrome coronavirus 2—specific antibody responses in coronavirus disease patients Emerg. Infect. Dis. 2020 26 1478 1488 10.3201/eid2607.200841 32267220 

  4. 4. Amanat F A serological assay to detect SARS-CoV-2 seroconversion in humans Nat. Med. 2020 26 1033 1036 10.1038/s41591-020-0913-5 32398876 

  5. 5. Wajnberg A Robust neutralizing antibodies to SARS-CoV-2 infection persist for months Science 2020 370 1227 1230 10.1126/science.abd7728 33115920 

  6. 6. Deng W Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques Science 2020 369 818 823 10.1126/science.abc5343 32616673 

  7. 7. Alsoussi WB A potently neutralizing antibody protects mice against SARS-CoV-2 infection J. Immunol. 2020 205 915 922 10.4049/jimmunol.2000583 32591393 

  8. 8. Hanrath, A. T., Payne, B. A. I. & Duncan, C. J. A. Prior SARS-CoV-2 infection is associated with protection against symptomatic reinfection. J. Infect .  82,  e29–e30 (2020). 

  9. 9. Hall, V. J. et al. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet 397 , 1459–1469 (2021). 

  10. 10. Chodick, G. et al. Assessment of Effectiveness of 1 Dose of BNT162b2 Vaccine for SARS-CoV-2 Infection 13 to 24 Days After Immunization.  JAMA Netw Open . 4 , e2115985 (2021). 

  11. 11. Pradenas E Stable neutralizing antibody levels 6 months after mild and severe COVID-19 episodes Med 2021 2 313 320 10.1016/j.medj.2021.01.005 33554155 

  12. 12. EMA. COVID-19 Vaccines: Authorised . Accessed 5th June 2021.  https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/vaccines-covid-19/covid-19-vaccines-authorised#authorised-covid-19-vaccines-section . 

  13. 13. Folegatti PM Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial Lancet 2020 396 467 478 10.1016/S0140-6736(20)31604-4 32702298 

  14. 14. Anderson EJ Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults N. Engl. J. Med. 2020 383 2427 2438 10.1056/NEJMoa2028436 32991794 

  15. 15. Walsh EE Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates N. Engl. J. Med. 2020 383 2439 2450 10.1056/NEJMoa2027906 33053279 

  16. 16. Public Health England. Investigation of SARS-CoV-2 Variants of Concern in England https://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201 (2021). 

  17. 17. Tegally, H. et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. Preprint at bioRxiv https://www.medrxiv.org/content/10.1101/2020.12.21.20248640v1 (2020). 

  18. 18. Zhou, D. et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine induced sera. Cell   184, 2384–2361.e6 (2021). 

  19. 19. Shen, X. et al. SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host Microbe  29 , 529–539.e3 (2021). 

  20. 20. Rambaut, A. et al. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. Virological.org (2020). 

  21. 21. Muik A Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera Science 2021 6105 1 5 

  22. 22. Cele, S., et al. Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature 593,  142–146 (2021). 

  23. 23. Virtanen, J. et al. Kinetics of Neutralizing Antibodies of COVID-19 Patients Tested Using Clinical D614G, B.1.1.7, and B 1.351 Isolates in Microneutralization Assays. Viruses 13 , 996 (2021). 

  24. 24. Plante, J. A. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature  592,  116–121 (2020). 

  25. 25. Hou YJ SARS-CoV-2 D614G variant exhibits enhanced replication ex vivo and earlier transmission in vivo Science 2021 370 1464 1468 

  26. 26. Wibmer, C. K. et al. SARS-CoV-2 501Y. V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med.   27 , 622–625 (2021). 

  27. 27. Lynch KL Magnitude and kinetics of anti-severe acute respiratory syndrome Coronavirus 2 antibody responses and their relationship to disease severity Clin. Infect. Dis. 2021 72 301 308 10.1093/cid/ciaa979 33501951 

  28. 28. Grossberg, A. N. et al. A multiplex chemiluminescent immunoassay for serological profiling of COVID-19-positive symptomatic and asymptomatic patients. Nat. Commun . 12 , 740 (2021). 

  29. 29. Manisty C Correspondence antibody response to first BNT162b2 dose in previously SARS-CoV-2-infected individuals Lancet 2021 6736 2 3 

  30. 30. Wang, Z. et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592 , 616–622 (2021). 

  31. 31. Collier, D. A. et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 593,  136–141 (2021). 

  32. 32. Liu, Y. et al. Neutralizing activity of BNT162b2-elicited serum. N. Engl. J. Med . 384,  1466–1468 (2021). 

  33. 33. Dagan, N. et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med . 384, 1412–1423 (2021). 

  34. 34. Amit, S., Regev-Yochay, G., Afek, A., Kreiss, Y. & Leshem, E. Early rate reductions of SARS-CoV-2 infection and COVID-19 in BNT162b2 vaccine recipients. Lancet  397, 875–877 (2021). 

  35. 35. Krammer, F. et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N. Engl. J. Med .  384, 1372–1374 (2021). 

  36. 36. Saadat, S. et al. Binding and neutralization antibody titers after a single vaccine dose in health care workers previously infected with SARS-CoV-2. JAMA  325, 1467–1469 (2021). 

  37. 37. Polack FP Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine N. Engl. J. Med. 2020 383 2603 2615 10.1056/NEJMoa2034577 33301246 

  38. 38. Capetti, A. F. et al. Impressive boosting of anti-S1/S2 IgG production in COVID-19-experienced patients after the first shot of the BNT162b2 mRNA COVID-19 vaccine. Clin. Infect. Dis . ciab214 (2021). 

  39. 39. Chen WH Vaccination in the elderly: an immunological perspective Trends Immunol. 2009 30 351 359 10.1016/j.it.2009.05.002 19540808 

  40. 40. Prendecki M Effect of previous SARS-CoV-2 infection on humoral and T-cell responses to single-dose BNT162b2 vaccine Lancet 2021 6736 10 12 

  41. 41. Sahin U COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses Nature 2020 586 594 599 10.1038/s41586-020-2814-7 32998157 

  42. 42. Goel, R. R. et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naive and recovered individuals following mRNA vaccination. Sci. Immunol. 6,  eabi6950 (2021). 

  43. 43. Jalkanen, P. et al. A combination of N and S antigens with IgA and IgG measurement strengthens the accuracy of SARS-CoV-2 serodiagnostics. J. Infect. Dis . jiab222 (2021). 

  44. 44. Juuso, R. et al. A Generic, Scalable, and Rapid Time-Resolved Förster Resonance Energy Transfer-Based Assay for Antigen Detection—SARS-CoV-2 as a Proof of Concept. MBio  12, e00902–21 (2021).  

  45. 45. Quick J Multiplex PCR method for MinION and illumina sequencing of Zika and other virus genomes directly from clinical samples Nat. Protoc. 2017 12 1261 1266 10.1038/nprot.2017.066 28538739 

  46. 46. Bolger AM Lohse M Usadel B Trimmomatic: a flexible trimmer for Illumina sequence data Bioinformatics 2014 30 2114 2120 10.1093/bioinformatics/btu170 24695404 

  47. 47. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv:1303.3997 (2013). 

  48. 48. Li H The sequence alignment/Map format and SAMtools Bioinformatics 2009 25 2078 2079 10.1093/bioinformatics/btp352 19505943 

  49. 49. Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181 , 281–292.e6 (2020). 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로