$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

코로나바이러스 감염증-19 백신에 대한 업데이트 및 소아청소년에서의 고려사항
Updates on Coronavirus Disease-2019 Vaccine and Consideration in Children 원문보기

Pediatric infection and vaccine: PIV, v.28 no.1, 2021년, pp.7 - 20  

강현미 (가톨릭대학교 의과대학 소아과교실) ,  최은화 (서울대학교 의과대학 소아과교실) ,  김예진 (성균관대학교 삼성서울병원 소아청소년과)

초록
AI-Helper 아이콘AI-Helper

2021년 3월 현재, 인류는 2019년 말부터 시작된 코로나바이러스 감염증-19(COVID-19)의 세계적 유행으로 인해 고통받고 있다. 2020년에는 messenger RNA (mRNA) 백신, 바이러스 벡터를 사용한 DNA 백신 등 새로운 플랫폼의 백신들이 긴급사용 승인을 받았고, 이후 대규모 접종이 이루어지기 시작하였다. 본 논문에서는 현재 전 세계적으로 가장 널리 사용되고 있는 COVID-19 백신들에 대하여 그 기전을 살펴보고, 임상시험 내용을 분석하여 효능과 안전선에 대한 자료를 정리하였고, 소아청소년에 대한 백신 임상시험 상황 및 소아에서 고려할 점에 대하여 언급하였다.

Abstract AI-Helper 아이콘AI-Helper

As of March 2021, humanity has been suffering from the global severe acute respiratory syndrome coronavirus 2 pandemic that began late 2019. In 2020, new vaccine platforms-including mRNA vaccines and viral vector-based DNA vaccines-have been given emergency use authorization (EUA), leading to rollin...

주제어

참고문헌 (60)

  1. Fraser C, Riley S, Anderson RM, Ferguson NM. Factors that make an infectious disease outbreak controllable. Proc Natl Acad Sci U S A 2004;101:6146-51. 

  2. Peak CM, Childs LM, Grad YH, Buckee CO. Comparing nonpharmaceutical interventions for containing emerging epidemics. Proc Natl Acad Sci U S A 2017;114:4023-8. 

  3. Weber DJ, Rutala WA, Fischer WA, Kanamori H, Sickbert-Bennett EE. Emerging infectious diseases: focus on infection control issues for novel coronaviruses (severe acute respiratory syndrome-CoV and Middle East respiratory syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9). Am J Infect Control 2016;44:e91-100. 

  4. Park Y, Huh IS, Lee J, Kang CR, Cho SI, Ham HJ, et al. Application of testing-tracing-treatment strategy in response to the COVID-19 outbreak in Seoul, Korea. J Korean Med Sci 2020;35:e396. 

  5. Haber MJ, Shay DK, Davis XM, Patel R, Jin X, Weintraub E, et al. Effectiveness of interventions to reduce contact rates during a simulated influenza pandemic. Emerg Infect Dis 2007;13:581-9. 

  6. World Health Organization. Draft landscape and tracker of COVID-19 candidate vaccines [Internet]. Geneva: WHO; 2021 [cited 2021 Mar 12]. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines. 

  7. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395:565-74. 

  8. Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis 2020;1866:165878. 

  9. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020;181:281-292.e6. 

  10. Sternberg A, Naujokat C. Structural features of coronavirus SARS-CoV-2 spike protein: targets for vaccination. Life Sci 2020;257:118056. 

  11. Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020;41:1141-9. 

  12. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 2020;9:382-5. 

  13. Walsh EE, Frenck RW Jr, Falsey AR, Kitchin N, Absalon J, Gurtman A, et al. Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. N Engl J Med 2020;383:2439-50. 

  14. Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, et al. An mRNA vaccine against SARS-CoV-2 - Preliminary report. N Engl J Med 2020;383:1920-31. 

  15. Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020;396:467-78. 

  16. Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM, et al. Interim results of a phase 1-2a trial of Ad26.COV2.S COVID-19 vaccine. N Engl J Med 2021;NEJMoa2034201. 

  17. World Health Organization. Status of COVID-19 vaccines within WHO EUL/PQ evaluation process [Internet]. Geneva: WHO; 2021 [cited 2021 Mar 16]. Available from: https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_10March2021.pdf. 

  18. Humphreys IR, Sebastian S. Novel viral vectors in infectious diseases. Immunology 2018;153:1-9. 

  19. Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol 2021;21:73-82. 

  20. Krammer F. SARS-CoV-2 vaccines in development. Nature 2020;586:516-27. 

  21. Pichichero ME. Understanding messenger RNA and other SARS-CoV-2 vaccines [Internet]. Parsippany: MD Edge; 2020 [cited 2021 Mar 28]. Available from: https://www.mdedge.com/hematology-oncology/article/233491/coronavirus-updates/understanding-messenger-rna-and-other-sars. 

  22. Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020;586:567-71. 

  23. Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med 2020;383:1544-55. 

  24. Antrobus RD, Coughlan L, Berthoud TK, Dicks MD, Hill AV, Lambe T, et al. Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved influenza A antigens. Mol Ther 2014;22:668-74. 

  25. Zhang C, Zhou D. Adenoviral vector-based strategies against infectious disease and cancer. Hum Vaccin Immunother 2016;12:2064-74. 

  26. Afrough S, Rhodes S, Evans T, White R, Benest J. Immunologic dose-response to adenovirus-vectored vaccines in animals and humans: a systematic review of dose-response studies of replication incompetent adenoviral vaccine vectors when given via an intramuscular or subcutaneous route. Vaccines (Basel) 2020;8:131. 

  27. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020;383:2603-15. 

  28. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;384:403-16. 

  29. Voysey M, Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021;397:99-111. 

  30. Voysey M, Costa Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet 2021;397:881-91. 

  31. Sadoff J, Gray G, Vandebosch A, Cardenas V, Shukarev G, Grinsztejn B, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19. N Engl J Med, in press 2021. 

  32. Vaccines and Related Biological Products Advisory Committee. COVID-19 vaccine Ad26.COV2.S sponsor briefing document [Internet]. Beerse: Janssen; 2021 [cited 2021 Feb 21]. Available from: https://www.fda.gov/media/146219/download. 

  33. Muir KL, Kallam A, Koepsell SA, Gundabolu K. Thrombotic thrombocytopenia after Ad26.COV2.S vaccination. N Engl J Med, in press 2021. 

  34. Schultz NH, Sorvoll IH, Michelsen AE, Munthe LA, Lund-Johansen F, Ahlen MT, et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med, in press 2021. 

  35. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med, in press 2021. 

  36. European Medicines Agency. AstraZeneca's COVID-19 vaccine: EMA finds possible link to very rare cases of unusual blood clots with low blood platelets [Internet]. Amsterdam: EMA; 2021 [cited 2021 Mar 20]. Available from: https://www.ema.europa.eu/en/news/astrazenecas-covid-19-vaccine-ema-finds-possible-link-very-rare-cases-unusual-blood-clots-low-blood. 

  37. European Medicines Agency. COVID-19 vaccine AstraZeneca: PRAC investigating cases of thromboembolic events - Vaccine's benefits currently still outweigh risks - Update [Internet]. Amsterdam: EMA; 2021 [cited 2021 Apr 1]. Available from: https://www.ema.europa.eu/en/news/covid-19-vaccine-astrazeneca-prac-investigating-cases-thromboembolic-events-vaccines-benefits. 

  38. Ostergaard SD, Schmidt M, Horvath-Puho E, Thomsen RW, Sorensen HT. Thromboembolism and the Oxford-AstraZeneca COVID-19 vaccine: side-effect or coincidence? Lancet 2021;397:1441-3. 

  39. Mahase E. AstraZeneca vaccine: blood clots are "extremely rare" and benefits outweigh risks, regulators conclude. BMJ 2021;373:n931. 

  40. Korea Disease Control and Prevention Agency. Resuming some pending AstraZeneca vaccinations from April 12th [Internet]. Cheongju: KDCA; 2021 [cited 2021 Apr 27]. Available from: http://www.kdca.go.kr/gallery.es?mida20503030300&bid0004&b_list9&actview&list_no145062&nPage1&vlist_no_npage1&keyField&keyWord&orderby. 

  41. Centers for Disease Control and Prevention (US). CDC recommends use of Johnson & Johnson's Janssen COVID-19 vaccine resume [Internet]. Atlanta: CDC; 2021 [cited 2021 Apr 27]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/JJUpdate.html. 

  42. Pfizer. Studying the COVID-19 vaccine for children [Internet]. New York: Pfizer; 2021 [cited 2021 Apr 5]. Available from: https://www.pfizer.com/science/clinical-trials/children. 

  43. Pfizer. Pfizer-BioNTech announce positive topline results of pivotal COVID-19 vaccine study in adolescents [Internet]. New York: Pfizer; 2021 [cited 2021 Apr 17]. Available from: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-biontech-announce-positive-topline-results-pivotal. 

  44. Moderna. A COVID-19 vaccine study for children (Kidcove Study Trial ID: NCT04796896) [Internet]. Cambridge: Moderna; 2021 [cited 2021 Mar 31]. Available from: https://connect.trialscope.com/studies/0e8fc8e6-5782-46fd-8b03-0994a5ad8b41. 

  45. Moderna TX, Inc. A study to evaluate safety and effectiveness of mRNA-1273 vaccine in healthy children between 6 months of age and less than 12 years of age [Internet]. Bethesda: National Library of Medicine; 2021 [cited 2021 Mar 31]. Available from: https://clinicaltrials.gov/ct2/show/NCT04796896. 

  46. National Institute for Health Research (UK). First children's COVID-19 vaccine trial open [Internet]. London: NIHR; 2021 [cited 2021 Mar 31]. Available from: https://www.nihr.ac.uk/news/first-childrens-covid-19-vaccine-trial-open/26870. 

  47. Janssen. Johnson & Johnson expands phase 2a clinical trial of COVID-19 vaccine candidate to include adolescents [Internet]. Beerse: Janssen; 2021 [cited 2021 Apr 27]. Available from: https://www.jnj.com/johnson-johnson-expands-phase-2a-clinical-trial-of-covid-19-vaccine-candidate-to-include-adolescents. 

  48. United Nations. World population prospects 2019: data query [Internet]. New York: UN; 2021 [cited 2021 Apr 14]. Available from: https://population.un.org/wpp/DataQuery/. 

  49. Lu X, Zhang L, Du H, Zhang J, Li YY, Qu J, et al. SARS-CoV-2 infection in children. N Engl J Med 2020;382:1663-5. 

  50. Han MS, Choi EH, Chang SH, Jin BL, Lee EJ, Kim BN, et al. Clinical characteristics and viral RNA detection in children with coronavirus disease 2019 in the Republic of Korea. JAMA Pediatr 2021;175:73-80. 

  51. Jiehao C, Jin X, Daojiong L, Zhi Y, Lei X, Zhenghai Q, et al. A case series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin Infect Dis 2020;71:1547-51. 

  52. Liu W, Zhang Q, Chen J, Xiang R, Song H, Shu S, et al. Detection of COVID-19 in children in early January 2020 in Wuhan, China. N Engl J Med 2020;382:1370-1. 

  53. Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis 2020;20:689-96. 

  54. Choi SH, Kim HW, Kang JM, Kim DH, Cho EY. Epidemiology and clinical features of coronavirus disease 2019 in children. Clin Exp Pediatr 2020;63:125-32. 

  55. American Academy of Pediatrics. Children and COVID-19: state-level data report [Internet]. Itasca: AAP; 2021 [cited 2021 Apr 2]. Available from: https://services.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/children-and-covid-19-state-level-data-report/. 

  56. Centers for Disease Control and Prevention (US). 2019-20 season's pediatric flu deaths tie high mark set during 2017-18 season [Internet]. Atlanta: CDC; 2021 [cited 2021 Mar 4]. Available from: https://www.cdc.gov/flu/spotlights/2019-2020/2019-20-pediatric-flu-deaths.htm#:~:textLinkedIn-,2019%2D20%20Season's%20Pediatric%20Flu%20Deaths%20Tie%20High,Set%20During%202017%2D18%20Season&textAugust%2021%2C%202020%20%E2%80%93%20CDC%20today,for%20last%20season%20to%20188. 

  57. Goodman B. Children likely the 'leading edge' in spread of COVID-19 variants [Internet]. New York: Medscape; 2021 [cited 2021 Apr 17]. Available from: https://www.medscape.com/viewarticle/948584. 

  58. Klass P, Ratner AJ. Vaccinating children against COVID-19 - The lessons of measles. N Engl J Med 2021;384:589-91. 

  59. Anderson EJ, Campbell JD, Creech CB, Frenck R, Kamidani S, Munoz FM, et al. Warp speed for COVID-19 vaccines: Why are children stuck in neutral? Clin Infect Dis 2020;ciaa1425. 

  60. Wong BLH, Ramsay ME, Ladhani SN. Should children be vaccinated against COVID-19 now? Arch Dis Child 2021;archdischild-2020-321225. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로