$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Effects of Photochemical Oxidation of the Carbonaceous Additives on Li-S Cell Performance

ACS applied materials & interfaces, v.13 no.35, 2021년, pp.41517 - 41523  

Park, Jungjin (Department of Chemical and Biomolecular Engineering , University of California Berkeley , Berkeley , California 94720 , United States) ,  Moon, Joonhee (Research Center for Materials Analysis , Korea Basic Science Institute , 169-148 Gwahak Road , Daejeon 34133 , Republic of Korea) ,  Kim, Kookhan (Department of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea) ,  Ri, Vitalii (Department of Materials Science and Engineering , Chungnam National University , 99 Daehak Road, Yuseong-gu , Daejeon 34134 , Republic of Korea) ,  Lee, Sangheon (Mobile Communications Business , Samsung Electronics , Suwon 16677 , Republic of Korea) ,  Hong, Byung Hee (Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea) ,  Sung, Yung-Eun (Department of Chemical and Biological Engineering , Seoul National Unive) ,  Kim, Chunjoong ,  Cairns, Elton J.

Abstract AI-Helper 아이콘AI-Helper

We introduce a simple and easy way to functionalize the surface of various carbonaceous materials through the ultraviolet light/ozone (UV/O3) plasma where we utilize the zero-, one-, and two-dimensional carbon frameworks. In a general manner, the lamps of a UV/O3 generator create two different wavel...

Keyword

참고문헌 (32)

  1. Armand, M., Tarascon, J.-M.. Building better batteries. Nature, vol.451, no.7179, 652-657.

  2. Tarascon, J.-M.. Key challenges in future Li-battery research. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, vol.368, no.1923, 3227-3241.

  3. Blomgren, George E.. The Development and Future of Lithium Ion Batteries. Journal of the Electrochemical Society : JES, vol.164, no.1, A5019-A5025.

  4. Cabana, Jordi, Monconduit, Laure, Larcher, Dominique, Palacín, M. Rosa. Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced materials, vol.22, no.35, E170-E192.

  5. Peng, Hong‐Jie, Huang, Jia‐Qi, Cheng, Xin‐Bing, Zhang, Qiang. Review on High‐Loading and High‐Energy Lithium-Sulfur Batteries. Advanced energy materials, vol.7, no.24, 1700260-.

  6. Manthiram, Arumugam, Fu, Yongzhu, Chung, Sheng-Heng, Zu, Chenxi, Su, Yu-Sheng. Rechargeable Lithium–Sulfur Batteries. Chemical reviews, vol.114, no.23, 11751-11787.

  7. Fang, Ruopian, Zhao, Shiyong, Sun, Zhenhua, Wang, Da‐Wei, Cheng, Hui‐Ming, Li, Feng. More Reliable Lithium‐Sulfur Batteries: Status, Solutions and Prospects. Advanced materials, vol.29, no.48, 1606823-.

  8. Chung, Woo Jin, Griebel, Jared J., Kim, Eui Tae, Yoon, Hyunsik, Simmonds, Adam G., Ji, Hyun Jun, Dirlam, Philip T., Glass, Richard S., Wie, Jeong Jae, Nguyen, Ngoc A., Guralnick, Brett W., Park, Jungjin, Somogyi, Árpád, Theato, Patrick, Mackay, Michael E., Sung, Yung-Eun, Char, Kookheon, Pyun, Jeffrey. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nature chemistry, vol.5, no.6, 518-524.

  9. Park, Jungjin, Kim, Eui Tae, Kim, Chunjoong, Pyun, Jeffrey, Jang, Hyung‐Seok, Shin, Jaeho, Choi, Jang Wook, Char, Kookheon, Sung, Yung‐Eun. The Importance of Confined Sulfur Nanodomains and Adjoining Electron Conductive Pathways in Subreaction Regimes of Li‐S Batteries. Advanced energy materials, vol.7, no.19, 1700074-.

  10. Park, Jungjin, Yu, Seung-Ho, Sung, Yung-Eun. Design of structural and functional nanomaterials for lithium-sulfur batteries. Nano today, vol.18, 35-64.

  11. Hwa, Yoon, Kim, Hyo Won, Shen, Hao, Parkinson, Dilworth Y., McCloskey, Bryan D., Cairns, Elton J.. A sustainable sulfur-carbonaceous composite electrode toward high specific energy rechargeable cells. Materials horizons, vol.7, no.2, 524-529.

  12. Ji, Xiulei, Lee, Kyu Tae, Nazar, Linda F.. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature materials, vol.8, no.6, 500-506.

  13. Wang, Hailiang, Yang, Yuan, Liang, Yongye, Robinson, Joshua Tucker, Li, Yanguang, Jackson, Ariel, Cui, Yi, Dai, Hongjie. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.11, no.7, 2644-2647.

  14. Su, Yu-Sheng, Fu, Yongzhu, Cochell, Thomas, Manthiram, Arumugam. A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nature communications, vol.4, 2985-.

  15. Simmons, J. M., Nichols, B. M., Baker, S. E., Marcus, M. S., Castellini, O. M., Lee, C.-S., Hamers, R. J., Eriksson, M. A.. Effect of Ozone Oxidation on Single-Walled Carbon Nanotubes. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.110, no.14, 7113-7118.

  16. Ma, R., Yoon, D., Chun, K.Y., Baik, S.. The effects of UV/ozone treatments on the electrical transport behavior of single-walled carbon nanotube arrays. Chemical physics letters, vol.474, no.1, 158-161.

  17. 10.1109/TPHP.1976.1135156 Vig, J. R. UV Ozone Cleaning of Surfaces. IEEE Trans. Parts, Hybrids, Packag . 1976. 

  18. Lukatskaya, Maria R., Dunn, Bruce, Gogotsi, Yury. Multidimensional materials and device architectures for future hybrid energy storage. Nature communications, vol.7, 12647-.

  19. Shehzad, Khurram, Xu, Yang, Gao, Chao, Duan, Xiangfeng. Three-dimensional macro-structures of two-dimensional nanomaterials. Chemical Society reviews, vol.45, no.20, 5541-5588.

  20. Xu, Gui-Liang, Xu, Yue-Feng, Fang, Jun-Chuan, Peng, Xin-Xing, Fu, Fang, Huang, Ling, Li, Jun-Tao, Sun, Shi-Gang. Porous Graphitic Carbon Loading Ultra High Sulfur as High-Performance Cathode of Rechargeable Lithium–Sulfur Batteries. ACS applied materials & interfaces, vol.5, no.21, 10782-10793.

  21. Cheng, X.B., Huang, J.Q., Zhang, Q., Peng, H.J., Zhao, M.Q., Wei, F.. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries. Nano energy, vol.4, 65-72.

  22. Kurmaev, E. Z., Galakhov, A. V., Moewes, A., Moehlecke, S., Kopelevich, Y.. Interlayer conduction band states in graphite-sulfur composites. Physical review. B, Condensed matter and materials physics, vol.66, no.19, 193402-.

  23. Criegee, Rudolf. Mechanism of Ozonolysis. Angewandte Chemie. International edition in English, vol.14, no.11, 745-752.

  24. Jeong, H.-K., Noh, H.-J., Kim, J.-Y., Jin, M. H., Park, C. Y., Lee, Y. H.. X-ray absorption spectroscopy of graphite oxide. Europhysics letters : EPL, vol.82, no.6, 67004-.

  25. Zangmeister, Christopher D.. Preparation and Evaluation of Graphite Oxide Reduced at 220 °C. Chemistry of materials : a publication of the American Chemical Society, vol.22, no.19, 5625-5629.

  26. Park, Jungjin, Moon, Joonhee, Kim, Chunjoong, Kang, Jin Hyoun, Lim, Eunhak, Park, Jaesung, Lee, Kyung Jae, Yu, Seung-Ho, Seo, Jung-Hye, Lee, Jouhahn, Heo, Jiyoung, Tanaka, Nobuo, Cho, Sung-Pyo, Pyun, Jeffrey, Cabana, Jordi, Hong, Byung Hee, Sung, Yung-Eun. Graphene quantum dots: structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulfur batteries. NPG Asia Materials, vol.8, e272-e272.

  27. Chan, Siu-Pang, Chen, Gang, Gong, X. G., Liu, Zhi-Feng. Oxidation of Carbon Nanotubes by Singlet $ \mathrm{O}_{2}$. Physical review letters, vol.90, no.8, 086403-.

  28. Fan, Lili, Zhu, Miao, Lee, Xiao, Zhang, Rujing, Wang, Kunlin, Wei, Jinquan, Zhong, Minlin, Wu, Dehai, Zhu, Hongwei. Direct Synthesis of Graphene Quantum Dots by Chemical Vapor Deposition. Particle & particle systems characterization : measurement and description of particle properties and behavior in powders and other disperse systems, vol.30, no.9, 764-769.

  29. Handbook of X-ray Photoelectron Moulder J. F. 1995 

  30. Iizumi, Yoko, Yudasaka, Masako, Kim, Jaeho, Sakakita, Hajime, Takeuchi, Tsukasa, Okazaki, Toshiya. Oxygen-doped carbon nanotubes for near-infrared fluorescent labels and imaging probes. Scientific reports, vol.8, 6272-.

  31. Acik, Muge, Lee, Geunsik, Mattevi, Cecilia, Pirkle, Adam, Wallace, Robert M., Chhowalla, Manish, Cho, Kyeongjae, Chabal, Yves. The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.115, no.40, 19761-19781.

  32. Moon, Joonhee, Park, Jungjin, Jeon, Cheolho, Lee, Jouhahn, Jo, Insu, Yu, Seung-Ho, Cho, Sung-Pyo, Sung, Yung-Eun, Hong, Byung Hee. An electrochemical approach to graphene oxide coated sulfur for long cycle life. Nanoscale, vol.7, no.31, 13249-13255.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로