$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Development of Cdc2-like Kinase 2 Inhibitors: Achievements and Future Directions

Journal of medicinal chemistry, v.64 no.18, 2021년, pp.13191 - 13211  

Qin, Zhen (Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 211100 , P. R. China) ,  Qin, Lian (Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 211100 , P. R. China) ,  Feng, Xi (Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 211100 , P. R. China) ,  Li, Zhiyu ,  Bian, Jinlei

Abstract AI-Helper 아이콘AI-Helper

Cdc2-like kinases (CLKs; CLK1-4) are associated with various neurodegenerative disorders, metabolic regulation, and viral infection and have been recognized as potential drug targets. Human CLK2 has received increasing attention as a regulator that phosphorylates serine- and arginine-rich (SR) prote...

참고문헌 (137)

  1. Weissman, Irving L., Anderson, David J., Gage, Fred. STEM AND PROGENITOR CELLS: Origins, Phenotypes, Lineage Commitments, and Transdifferentiations. Annual review of cell and developmental biology, vol.17, 387-403.

  2. Naji, Abderrahim, Eitoku, Masamitsu, Favier, Benoit, Deschaseaux, Frédéric, Rouas-Freiss, Nathalie, Suganuma, Narufumi. Biological functions of mesenchymal stem cells and clinical implications. Cellular and molecular life sciences : CMLS, vol.76, no.17, 3323-3348.

  3. Deng, Qi, Li, Ping, Che, Manju, Liu, Jiajia, Biswas, Soma, Ma, Gang, He, Lin, Wei, Zhanying, Zhang, Zhenlin, Yang, Yingzi, Liu, Huijuan, Li, Baojie. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. eLife, vol.8, e50208-.

  4. Spees, Jeffrey L., Lee, Ryang Hwa, Gregory, Carl A.. Mechanisms of mesenchymal stem/stromal cell function. Stem cell research & therapy, vol.7, no.1, 125-.

  5. Tam, Betty Y., Chiu, Kevin, Chung, Heekyung, Bossard, Carine, Nguyen, John Duc, Creger, Emily, Eastman, Brian W., Mak, Chi Ching, Ibanez, Maureen, Ghias, Abdullah, Cahiwat, Joseph, Do, Long, Cho, Shawn, Nguyen, Jackie, Deshmukh, Vishal, Stewart, Josh, Chen, Chiao-Wen, Barroga, Charlene, Dellamary, Luis, KC, Sunil K., Phalen, Timothy J., Hood, John, Cha, Steven, Yazici, Yusuf. The CLK inhibitor SM08502 induces anti-tumor activity and reduces Wnt pathway gene expression in gastrointestinal cancer models. Cancer letters, vol.473, 186-197.

  6. Deshmukh, V., Hu, H., Barroga, C., Bossard, C., KC, S., Dellamary, L., Stewart, J., Chiu, K., Ibanez, M., Pedraza, M., Seo, T., Do, L., Cho, S., Cahiwat, J., Tam, B., Tambiah, J.R.S., Hood, J., Lane, N.E., Yazici, Y.. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis and cartilage, vol.26, no.1, 18-27.

  7. Harb, Jerry, Lin, Pen-Jen, Hao, Jijun. Recent Development of Wnt Signaling Pathway Inhibitors for Cancer Therapeutics. Current oncology reports, vol.21, no.2, 12-.

  8. Logan, Catriona Y., Nusse, Roel. THE WNT SIGNALING PATHWAY IN DEVELOPMENT AND DISEASE. Annual review of cell and developmental biology, vol.20, 781-810.

  9. Clevers, Hans. Wnt/β-Catenin Signaling in Development and Disease. Cell, vol.127, no.3, 469-480.

  10. Clevers, H., Nusse, R.. Wnt/β-Catenin Signaling and Disease. Cell, vol.149, no.6, 1192-1205.

  11. MacDonald, Bryan T., Tamai, Keiko, He, Xi. Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. Developmental cell, vol.17, no.1, 9-26.

  12. Reya, Tannishtha, Clevers, Hans. Wnt signalling in stem cells and cancer. Nature, vol.434, no.7035, 843-850.

  13. Wang, Yudan, Fan, Xinhao, Xing, Lei, Tian, Faming. Wnt signaling: a promising target for osteoarthritis therapy. Cell communication and signaling : CCS, vol.17, no.1, 97-.

  14. Corbett, James L., Tosh, David. Conversion of one cell type into another: implications for understanding organ development, pathogenesis of cancer and generating cells for therapy. Biochemical Society transactions, vol.42, no.3, 609-616.

  15. Thysen, S., Luyten, F.P., Lories, R.J.. Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis. Osteoarthritis and cartilage, vol.23, no.2, 275-279.

  16. Blom, Arjen B., Brockbank, Sarah M., van Lent, Peter L., van Beuningen, Henk M., Geurts, Jeroen, Takahashi, Nozomi, van der Kraan, Peter M., van de Loo, Fons A., Schreurs, B. Wim, Clements, Kristen, Newham, Peter, van den Berg, Wim B.. Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: Prominent role of Wnt-induced signaling protein 1. Arthritis and rheumatism, vol.60, no.2, 501-512.

  17. Zhu, Mei, Tang, Dezhi, Wu, Qiuqian, Hao, Suyang, Chen, Mo, Xie, Chao, Rosier, Randy N, O'Keefe, Regis J, Zuscik, Michael, Chen, Di. Activation of β-Catenin Signaling in Articular Chondrocytes Leads to Osteoarthritis-Like Phenotype in Adult β-Catenin Conditional Activation Mice. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, vol.24, no.1, 12-21.

  18. Tao, Shi-Cong, Yuan, Ting, Zhang, Yue-Lei, Yin, Wen-Jing, Guo, Shang-Chun, Zhang, Chang-Qing. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, vol.7, no.1, 180-195.

  19. Alcaraz, María José, Guillén, María Isabel, Ferrándiz, María Luisa. Emerging therapeutic agents in osteoarthritis. Biochemical pharmacology, vol.165, 4-16.

  20. Huang, Junjie, Chen, Chuanshun, Liang, Chi, Luo, Pan, Xia, Guang, Zhang, Lina, Wang, Xinxing, Wen, Zi, Cao, Xu, Wu, Song. Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. Stem cells and development, vol.29, no.7, 401-413.

  21. Kahn, Michael. Can we safely target the WNT pathway?. Nature reviews. Drug discovery, vol.13, no.7, 513-532.

  22. Zhan, T, Rindtorff, N, Boutros, M. Wnt signaling in cancer. Oncogene, vol.36, no.11, 1461-1473.

  23. Ahmed, Kamal, Shaw, Holly V., Koval, Alexey, Katanaev, Vladimir L.. A Second WNT for Old Drugs: Drug Repositioning against WNT-Dependent Cancers. Cancers, vol.8, no.7, 66-.

  24. Deshmukh, V., O'Green, A.L., Bossard, C., Seo, T., Lamangan, L., Ibanez, M., Ghias, A., Lai, C., Do, L., Cho, S., Cahiwat, J., Chiu, K., Pedraza, M., Anderson, S., Harris, R., Dellamary, L., KC, S., Barroga, C., Melchior, B., Tam, B., Kennedy, S., Tambiah, J., Hood, J., Yazici, Y.. Modulation of the Wnt pathway through inhibition of CLK2 and DYRK1A by lorecivivint as a novel, potentially disease-modifying approach for knee osteoarthritis treatment. Osteoarthritis and cartilage, vol.27, no.9, 1347-1360.

  25. Wang, Eric T., Sandberg, Rickard, Luo, Shujun, Khrebtukova, Irina, Zhang, Lu, Mayr, Christine, Kingsmore, Stephen F., Schroth, Gary P., Burge, Christopher B.. Alternative Isoform Regulation in Human Tissue Transcriptomes. Nature, vol.456, no.7221, 470-476.

  26. The Transcriptional Landscape of the Mammalian Genome. Science, vol.309, no.5740, 1559-1563.

  27. Muraki, Michiko, Ohkawara, Bisei, Hosoya, Takamitsu, Onogi, Hiroshi, Koizumi, Jun, Koizumi, Tomonobu, Sumi, Kengo, Yomoda, Jun-ichiro, Murray, Michael V., Kimura, Hiroshi, Furuichi, Kiyoshi, Shibuya, Hiroshi, Krainer, Adrian R., Suzuki, Masaaki, Hagiwara, Masatoshi. Manipulation of Alternative Splicing by a Newly Developed Inhibitor of Clks. The Journal of biological chemistry, vol.279, no.23, 24246-24254.

  28. Nowak, Dawid G., Woolard, Jeanette, Amin, Elianna Mohamed, Konopatskaya, Olga, Saleem, Moin A., Churchill, Amanda J., Ladomery, Michael R., Harper, Steven J., Bates, David O.. Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. Journal of cell science, vol.121, no.20, 3487-3495.

  29. Prasad, Jayendra, Colwill, Karen, Pawson, Tony, Manley, James L.. The Protein Kinase Clk/Sty Directly Modulates SR Protein Activity: Both Hyper- and Hypophosphorylation Inhibit Splicing. Molecular and cellular biology, vol.19, no.10, 6991-7000.

  30. NAYLER, Oliver, STAMM, Stefan, ULLRICH, Axel. Characterization and comparison of four serine- and arginine-rich (SR) protein kinases. The Biochemical journal, vol.326, no.3, 693-700.

  31. Varjosalo, M., Keskitalo, S., Van Drogen, A., Nurkkala, H., Vichalkovski, A., Aebersold, R., Gstaiger, M.. The Protein Interaction Landscape of the Human CMGC Kinase Group. Cell reports, vol.3, no.4, 1306-1320.

  32. Hagiwara, Masatoshi. Alternative splicing: A new drug target of the post-genome era. Biochimica et biophysica acta. Proteins and proteomics, vol.1754, no.1, 324-331.

  33. Bossard, Carine, Cruz, Nathalia, Chiu, Kevin, Eastman, Brian, Mak, Chi Ching, KC, Sunil, Bucci, Gail, Stewart, Josh, Phalen, Timothy J., Cha, Steven. Abstract 5691: SM08502, a novel, small-molecule CDC-like kinase (CLK) inhibitor, demonstrates strong antitumor effects and Wnt pathway inhibition in castration-resistant prostate cancer (CRPC) models. Cancer research : the official organ of the American Association for Cancer Research, Inc, vol.80, no.16, 5691-5691.

  34. Deshmukh, V., O’Green, A., Bossard, C., Seo, T., Lamangan, L., Ibanez, M., Ghias, A., Lai, C., Do, L., Cho, S., Cahiwat, J., Chiu, K., Pedraza, M., Yazici, Y.. SM04690, A potential disease-modifying treatment for knee osteoarthritis, functions through inhibition of CLK2 and DYRK1A, novel molecular regulators of Wnt signaling, chondrogenesis, and inflammation. Osteoarthritis and cartilage, vol.27, no.suppl1, S37-S37.

  35. Yazici, Y., McAlindon, T.E., Gibofsky, A., Lane, N.E., Lattermann, C., Skrepnik, N., Swearingen, C.J., Simsek, I., Ghandehari, H., DiFrancesco, A., Gibbs, J., Tambiah, J.R.S., Hochberg, M.C.. A Phase 2b randomized trial of lorecivivint, a novel intra-articular CLK2/DYRK1A inhibitor and Wnt pathway modulator for knee osteoarthritis. Osteoarthritis and cartilage, vol.29, no.5, 654-666.

  36. Martín Moyano, Paula, Němec, Václav, Paruch, Kamil. Cdc-Like Kinases (CLKs): Biology, Chemical Probes, and Therapeutic Potential. International journal of molecular sciences, vol.21, no.20, 7549-.

  37. Lee, Joo Youn, Yun, Ji-Sook, Kim, Woo-Keun, Chun, Hang-Suk, Jin, Hyeonseok, Cho, Sungchan, Chang, Jeong Ho. Structural Basis for the Selective Inhibition of Cdc2-Like Kinases by CX-4945. BioMed research international, vol.2019, 1-10.

  38. https://www.uniprot.org (accessed 23 May 2021). 

  39. Wu, P., Nielsen, T.E., Clausen, M.H.. FDA-approved small-molecule kinase inhibitors. Trends in pharmacological sciences, vol.36, no.7, 422-439.

  40. Bullock, Alex N., Das, Sanjan, Debreczeni, Judit É., Rellos, Peter, Fedorov, Oleg, Niesen, Frank H., Guo, Kunde, Papagrigoriou, Evangelos, Amos, Ann L., Cho, Suhyung, Turk, Benjamin E., Ghosh, Gourisankar, Knapp, Stefan. Kinase Domain Insertions Define Distinct Roles of CLK Kinases in SR Protein Phosphorylation. Structure, vol.17, no.3, 352-362.

  41. http://www.rcsb.org/structure/3NR9 (accessed 23 May 2021). 

  42. Kallen, Joerg, Bergsdorf, Christian, Arnaud, Bertrand, Bernhard, Mario, Brichet, Murielle, Cobos‐Correa, Amanda, Elhajouji, Azeddine, Freuler, Felix, Galimberti, Ivan, Guibourdenche, Christel, Haenni, Simon, Holzinger, Sandra, Hunziker, Juerg, Izaac, Aude, Kaufmann, Markus, Leder, Lukas, Martus, Hans‐Joerg, von Matt, Peter, Polyakov, Valery, Roethlisberger, Patrik, Roma, Guglielmo, Stiefl, Nikolaus, Uteng, Marianne, Lerchner, Andreas. X‐ray Structures and Feasibility Assessment of CLK2 Inhibitors for Phelan-McDermid Syndrome. ChemMedChem : Chemistry Enabling Drug Discovery, vol.13, no.18, 1997-2007.

  43. Iwai, Kenichi, Yaguchi, Masahiro, Nishimura, Kazuho, Yamamoto, Yukiko, Tamura, Toshiya, Nakata, Daisuke, Dairiki, Ryo, Kawakita, Yoichi, Mizojiri, Ryo, Ito, Yoshiteru, Asano, Moriteru, Maezaki, Hironobu, Nakayama, Yusuke, Kaishima, Misato, Hayashi, Kozo, Teratani, Mika, Miyakawa, Shuichi, Iwatani, Misa, Miyamoto, Maki, Klein, Michael G, Lane, Wes, Snell, Gyorgy, Tjhen, Richard, He, Xingyue, Pulukuri, Sai, Nomura, Toshiyuki. Anti‐tumor efficacy of a novel CLK inhibitor via targeting RNA splicing and MYC‐dependent vulnerability. EMBO molecular medicine, vol.10, no.6, e8289-.

  44. Prak, Krisna, Kriston-Vizi, Janos, Chan, A. W. Edith, Luft, Christin, Costa, Joana R., Pengo, Niccolo, Ketteler, Robin. Benzobisthiazoles Represent a Novel Scaffold for Kinase Inhibitors of CLK Family Members. Biochemistry, vol.55, no.3, 608-617.

  45. Int. J. Oncol. Chang F. 469 22 2003 

  46. Ben-David, Y., Letwin, K., Tannock, L., Bernstein, A., Pawson, T.. A mammalian protein kinase with potential for serine/threonine and tyrosine phosphorylation is related to cell cycle regulators.. The EMBO journal, vol.10, no.2, 317-325.

  47. Prasad, Jayendra, Manley, James L.. Regulation and Substrate Specificity of the SR Protein Kinase Clk/Sty. Molecular and cellular biology, vol.23, no.12, 4139-4149.

  48. Kulkarni, Prakash, Jolly, Mohit Kumar, Jia, Dongya, Mooney, Steven M., Bhargava, Ajay, Kagohara, Luciane T., Chen, Yihong, Hao, Pengyu, He, Yanan, Veltri, Robert W., Grishaev, Alexander, Weninger, Keith, Levine, Herbert, Orban, John. Phosphorylation-induced conformational dynamics in an intrinsically disordered protein and potential role in phenotypic heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, vol.114, no.13, E2644-E2653.

  49. Duncan, P.I., Stojdl, D.F., Marius, R.M., Scheit, K.H., Bell, J.C.. The Clk2 and Clk3 Dual-Specificity Protein Kinases Regulate the Intranuclear Distribution of SR Proteins and Influence Pre-mRNA Splicing. Experimental cell research, vol.241, no.2, 300-308.

  50. Eisenreich, Andreas, Bogdanov, Vladimir Y., Zakrzewicz, Andreas, Pries, Axel, Antoniak, Silvio, Poller, Wolfgang, Schultheiss, Heinz-Peter, Rauch, Ursula. Cdc2-Like Kinases and DNA Topoisomerase I Regulate Alternative Splicing of Tissue Factor in Human Endothelial Cells. Circulation research : a journal of the American Heart Association, vol.104, no.5, 589-599.

  51. Shepard, Peter J, Hertel, Klemens J. The SR protein family. Genome biology, vol.10, no.10, 242-242.

  52. Long, Yunxin, Sou, Weng Hong, Yung, Kristen Wing Yu, Liu, Haizhen, Wan, Stephanie Winn Chee, Li, Qingyun, Zeng, Chuyue, Law, Carmen Oi Kwan, Chan, Gordon Ho Ching, Lau, Terrence Chi Kong, Ngo, Jacky Chi Ki. Distinct mechanisms govern the phosphorylation of different SR protein splicing factors. The Journal of biological chemistry, vol.294, no.4, 1312-1327.

  53. Zahler, A M, Lane, W S, Stolk, J A, Roth, M B. SR proteins: a conserved family of pre-mRNA splicing factors.. Genes & development, vol.6, no.5, 837-847.

  54. Keshwani, Malik M., Aubol, Brandon E., Fattet, Laurent, Ma, Chen-Ting, Qiu, Jinsong, Jennings, Patricia A., Fu, Xiang-Dong, Adams, Joseph A.. Conserved proline-directed phosphorylation regulates SR protein conformation and splicing function. The Biochemical journal, vol.466, no.2, 311-322.

  55. Gallego-Paez, L. M., Bordone, M. C., Leote, A. C., Saraiva-Agostinho, N., Ascensão-Ferreira, M., Barbosa-Morais, N. L.. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems. Human genetics, vol.136, no.9, 1015-1042.

  56. Ohe, Kenji, Hagiwara, Masatoshi. Modulation of Alternative Splicing with Chemical Compounds in New Therapeutics for Human Diseases. ACS chemical biology, vol.10, no.4, 914-924.

  57. El Marabti, Ettaib, Younis, Ihab. The Cancer Spliceome: Reprograming of Alternative Splicing in Cancer. Frontiers in molecular biosciences, vol.5, 80-.

  58. Escobar-Hoyos, Luisa, Knorr, Katherine, Abdel-Wahab, Omar. Aberrant RNA Splicing in Cancer. Annual review of cancer biology, vol.3, no.1, 167-185.

  59. Ghosh, Gourisankar, Adams, Joseph A.. Phosphorylation mechanism and structure of serine‐arginine protein kinases. The FEBS journal, vol.278, no.4, 587-597.

  60. Velazquez-Dones, Adolfo, Hagopian, Jonathan C., Ma, Chen-Ting, Zhong, Xiang-Yang, Zhou, Huilin, Ghosh, Gourisankar, Fu, Xiang-Dong, Adams, Joseph A.. Mass Spectrometric and Kinetic Analysis of ASF/SF2 Phosphorylation by SRPK1 and Clk/Sty. The Journal of biological chemistry, vol.280, no.50, 41761-41768.

  61. Aubol, B.E., Plocinik, R.M., Hagopian, J.C., Ma, C.T., McGlone, M.L., Bandyopadhyay, R., Fu, X.D., Adams, J.A.. Partitioning RS Domain Phosphorylation in an SR Protein through the CLK and SRPK Protein Kinases. Journal of molecular biology, vol.425, no.16, 2894-2909.

  62. Moeslein, Fred M., Myers, Michael P., Landreth, Gary E.. The CLK Family Kinases, CLK1 and CLK2, Phosphorylate and Activate the Tyrosine Phosphatase, PTP-1B. The Journal of biological chemistry, vol.274, no.38, 26697-26704.

  63. Brahmaiah, Dabbugoddu, Kanaka Durga Bhavani, Anagani, Aparna, Pasula, Sampath Kumar, Nangunoori, Solhi, Hélène, Le Guevel, Rémy, Baratte, Blandine, Ruchaud, Sandrine, Bach, Stéphane, Singh Jadav, Surender, Raji Reddy, Chada, Roisnel, Thierry, Mosset, Paul, Levoin, Nicolas, Grée, René. Discovery of DB18, a potent inhibitor of CLK kinases with a high selectivity against DYRK1A kinase. Bioorganic & medicinal chemistry, vol.31, 115962-.

  64. Gui, Jian-Fang, Lane, William S., Fu, Xiang-Dong. A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature, vol.369, no.6482, 678-682.

  65. Colwill, K., Pawson, T., Andrews, B., Prasad, J., Manley, J. L., Bell, J. C., Duncan, P. I.. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution.. The EMBO journal, vol.15, no.2, 265-275.

  66. Wu, Zhuo‐Xun, Yang, Yuqi, Wang, Guangsuo, Wang, Jing‐Quan, Teng, Qiu‐Xu, Sun, Lingling, Lei, Zi‐Ning, Lin, Lizhu, Chen, Zhe‐Sheng, Zou, Chang. Dual TTK/CLK2 inhibitor, CC‐671, selectively antagonizes ABCG2‐mediated multidrug resistance in lung cancer cells. Cancer Science, vol.111, no.8, 2872-2882.

  67. Yoshida, Taku, Kim, Jee Hyun, Carver, Kristopher, Su, Ying, Weremowicz, Stanislawa, Mulvey, Laura, Yamamoto, Shoji, Brennan, Cameron, Mei, Shenglin, Long, Henry, Yao, Jun, Polyak, Kornelia. CLK2 Is an Oncogenic Kinase and Splicing Regulator in Breast Cancer. Cancer research : the official organ of the American Association for Cancer Research, Inc, vol.75, no.7, 1516-1526.

  68. Hatting, Maximilian, Rines, Amy K., Luo, Chi, Tabata, Mitsuhisa, Sharabi, Kfir, Hall, Jessica A., Verdeguer, Francisco, Trautwein, Christian, Puigserver, Pere. Adipose Tissue CLK2 Promotes Energy Expenditure during High-Fat Diet Intermittent Fasting. Cell metabolism, vol.25, no.2, 428-437.

  69. Rodgers, Joseph T., Haas, Wilhelm, Gygi, Steven P., Puigserver, Pere. Cdc2-like Kinase 2 Is an Insulin-Regulated Suppressor of Hepatic Gluconeogenesis. Cell metabolism, vol.11, no.1, 23-34.

  70. Tabata, Mitsuhisa, Rodgers, Joseph T., Hall, Jessica A., Lee, Yoonjin, Jedrychowski, Mark P., Gygi, Steven P., Puigserver, Pere. Cdc2-Like Kinase 2 Suppresses Hepatic Fatty Acid Oxidation and Ketogenesis Through Disruption of the PGC-1α and MED1 Complex. Diabetes, vol.63, no.5, 1519-1532.

  71. Petsalaki, Eleni, Zachos, George. Clks 1, 2 and 4 prevent chromatin breakage by regulating the Aurora B-dependent abscission checkpoint. Nature communications, vol.7, 11451-.

  72. Virgirinia, Regina Putri, Jahan, Nusrat, Okada, Maya, Takebayashi‐Suzuki, Kimiko, Yoshida, Hitoshi, Nakamura, Makoto, Akao, Hajime, Yoshimoto, Yuta, Fatchiyah, Fatchiyah, Ueno, Naoto, Suzuki, Atsushi. Cdc2‐like kinase 2 (Clk2) promotes early neural development in Xenopus embryos. Development, growth & differentiation, vol.61, no.6, 365-377.

  73. Nam, Seon Young, Seo, Hyung Ho, Park, Hyung Sun, An, Sungkwan, Kim, Ji-Young, Yang, Kwang Hee, Kim, Cha Soon, Jeong, Meeseon, Jin, Young-Woo. Phosphorylation of CLK2 at Serine 34 and Threonine 127 by AKT Controls Cell Survival after Ionizing Radiation. The Journal of biological chemistry, vol.285, no.41, 31157-31163.

  74. Bidinosti, Michael, Botta, Paolo, Krüttner, Sebastian, Proenca, Catia C., Stoehr, Natacha, Bernhard, Mario, Fruh, Isabelle, Mueller, Matthias, Bonenfant, Debora, Voshol, Hans, Carbone, Walter, Neal, Sarah J., McTighe, Stephanie M., Roma, Guglielmo, Dolmetsch, Ricardo E., Porter, Jeffrey A., Caroni, Pico, Bouwmeester, Tewis, Lüthi, Andreas, Galimberti, Ivan. CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science, vol.351, no.6278, 1199-1203.

  75. Wong, Raymond, Balachandran, Ahalya, Mao, Annie YQ, Dobson, Wendy, Gray-Owen, Scott, Cochrane, Alan. Differential effect of CLK SR Kinases on HIV-1 gene expression: potential novel targets for therapy. Retrovirology, vol.8, 47-47.

  76. Yazici, Yusuf, McAlindon, Timothy E., Gibofsky, Allan, Lane, Nancy E., Clauw, Daniel, Jones, Morgan, Bergfeld, John, Swearingen, Christopher J., DiFrancesco, Anita, Simsek, Ismail, Tambiah, Jeyanesh, Hochberg, Marc C.. Lorecivivint, a Novel Intraarticular CDC‐like Kinase 2 and Dual‐Specificity Tyrosine Phosphorylation‐Regulated Kinase 1A Inhibitor and Wnt Pathway Modulator for the Treatment of Knee Osteoarthritis: A Phase II Randomized Trial. Arthritis & rheumatology, vol.72, no.10, 1694-1706.

  77. Araki, Shinsuke, Dairiki, Ryo, Nakayama, Yusuke, Murai, Aiko, Miyashita, Risa, Iwatani, Misa, Nomura, Toshiyuki, Nakanishi, Osamu. Inhibitors of CLK Protein Kinases Suppress Cell Growth and Induce Apoptosis by Modulating Pre-mRNA Splicing. PloS one, vol.10, no.1, e0116929-.

  78. Schröder, Martin, Bullock, Alex N., Fedorov, Oleg, Bracher, Franz, Chaikuad, Apirat, Knapp, Stefan. DFG-1 Residue Controls Inhibitor Binding Mode and Affinity, Providing a Basis for Rational Design of Kinase Inhibitor Selectivity. Journal of medicinal chemistry, vol.63, no.18, 10224-10234.

  79. Pagano, Nicholas, Wong, Eric Y., Breiding, Tom, Liu, Haidong, Wilbuer, Alexander, Bregman, Howard, Shen, Qi, Diamond, Scott L., Meggers, Eric. From Imide to Lactam Metallo-pyridocarbazoles: Distinct Scaffolds for the Design of Selective Protein Kinase Inhibitors. Journal of organic chemistry, vol.74, no.23, 8997-9009.

  80. Kumar, S. K. C. Process for preparing n-(5-(3-(7-(3-fluorophenyl)-3h-imidazo[4,5-c]pyridin-2-yl)-1h-indazol-5-yl)pyridin-3-yl)-3-methylbutanamide. Patent Appl. WO2017210407, 2017. 

  81. Hood, J.; Wallace, D.; Kumar, S. K. C. Preparation of imidazopyridinylindazole derivatives for use as wnt signal pathway inhibitors. Patent Appl. WO2013151708, 2013. 

  82. Hood, J.; Wallace, D. M.; Kumar, S. K. C.; Yazici, Y.; Swearingen, C.; Dellamary, L. A. 2-(1 H -Indazol-3-yl)-3 H -imidazo[4,5- c ]pyridines and their anti-inflammatory uses thereof. Patent Appl. WO2017079759, 2017. 

  83. Yazici, Y., McAlindon, T.E., Fleischmann, R., Gibofsky, A., Lane, N.E., Kivitz, A.J., Skrepnik, N., Armas, E., Swearingen, C.J., DiFrancesco, A., Tambiah, J.R.S., Hood, J., Hochberg, M.C.. A novel Wnt pathway inhibitor, SM04690, for the treatment of moderate to severe osteoarthritis of the knee: results of a 24-week, randomized, controlled, phase 1 study. Osteoarthritis and cartilage, vol.25, no.10, 1598-1606.

  84. Deshmukh, Vishal, Ibanez, Maureen, Hu, Haide, Cahiwat, Joseph, Wei, Ying, Stewart, Joshua, Hood, John, Yazici, Yusuf. A small-molecule inhibitor of the Wnt pathway, lorecivivint (SM04690), as a potential disease-modifying agent for the treatment of degenerative disc disease. The spine journal : official journal of the North American Spine Society, vol.20, no.9, 1492-1502.

  85. Chung, Heekyung, Creger, Emily, Sitts, Lauren, Chiu, Kevin, Mak, Chi-Ching, KC, Sunil, Tam, Betty, Bucci, Gail, Stewart, Josh, Phalen, Timothy, Cha, Steven. SM09419, a Novel, Small-Molecule CDC-like Kinase (CLK) Inhibitor, Demonstrates Strong Inhibition of the Wnt Signaling Pathway and Antitumor Effects in Mantle Cell Lymphoma Models. Blood, vol.134, no.1, 4059-4059.

  86. Yoda, Akinori, Morishita, Daisuke, Mizutani, Akio, Satoh, Yoshihiko, Ochi, Yotaro, Nannya, Yasuhito, Makishima, Hideki, Miyake, Hiroshi, Ogawa, Seishi. CTX-712, a Novel Clk Inhibitor Targeting Myeloid Neoplasms with SRSF2 Mutation. Blood, vol.134, no.1, 404-404.

  87. Hood, J.; Kumar, S. K. C. Preparation of indazolecarboxamide derivatives for use as wnt β-catenin signaling pathway inhibitors. Patent Appl. WO2013040215, 2013. 

  88. Deshmukh, V.; Murphy, E. A.; Hood, J. Preparation of indazole-3-carboxamides as wnt/β-catenin signaling pathway inhibitors. Patent Appl. WO2018075858, 2018. 

  89. Deshmukh, Vishal, Seo, Tim, O'Green, Alyssa L., Ibanez, Maureen, Hofilena, Brian, KC, Sunil, Stewart, Joshua, Dellamary, Luis, Chiu, Kevin, Ghias, Abdullah, Barroga, Charlene, Kennedy, Sarah, Tambiah, Jeyanesh, Hood, John, Yazici, Yusuf. SM04755, a small‐molecule inhibitor of the Wnt pathway, as a potential topical treatment for tendinopathy. Journal of orthopaedic research : official publication of the Orthopaedic Research Society, vol.39, no.9, 2048-2061.

  90. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373143 (accessed 23 May 2021). 

  91. Sako, Yukiya, Ninomiya, Kensuke, Okuno, Yukiko, Toyomoto, Masayasu, Nishida, Atsushi, Koike, Yuka, Ohe, Kenji, Kii, Isao, Yoshida, Suguru, Hashimoto, Naohiro, Hosoya, Takamitsu, Matsuo, Masafumi, Hagiwara, Masatoshi. Development of an orally available inhibitor of CLK1 for skipping a mutated dystrophin exon in Duchenne muscular dystrophy. Scientific reports, vol.7, 46126-.

  92. Hagiwara, M.; Ooe, K.; Sako, Y.; Hosoya, T.; Yoshida, S.; Sumida, Y. Pharmaceutical composition comprising compound or prodrug or salt for modifying splicing. Patent Appl. WO2017175842A1, 2017. 

  93. Hagiwara, M.; Kobayashi, A.; Hosoya, T.; Yoshida, S.; Sumida, Y. Composition for activating neurogenesis comprising compound having protein phosphoenzyme phosphorylation inhibitors. Patent Appl. WO2018043674A1, 2018. 

  94. Hagiwara, M.; Ajiro, M. Pharmaceutical composition and treatment method for genetic disease associated with splicing abnormalities. Patent Appl. WO2018151326A1, 2018. 

  95. Marupanthorn, Kulisara, Tantrawatpan, Chairat, Kheolamai, Pakpoom, Tantikanlayaporn, Duangrat, Manochantr, Sirikul. Bone morphogenetic protein-2 enhances the osteogenic differentiation capacity of mesenchymal stromal cells derived from human bone marrow and umbilical cord. International journal of molecular medicine, vol.39, no.3, 654-662.

  96. Funnell, Tyler, Tasaki, Shinya, Oloumi, Arusha, Araki, Shinsuke, Kong, Esther, Yap, Damian, Nakayama, Yusuke, Hughes, Christopher S., Cheng, S.-W. Grace, Tozaki, Hirokazu, Iwatani, Misa, Sasaki, Satoshi, Ohashi, Tomohiro, Miyazaki, Tohru, Morishita, Nao, Morishita, Daisuke, Ogasawara-Shimizu, Mari, Ohori, Momoko, Nakao, Shoichi, Karashima, Masatoshi, Sano, Masaya, Murai, Aiko, Nomura, Toshiyuki, Uchiyama, Noriko, Kawamoto, Tomohiro, Hara, Ryujiro, Nakanishi, Osamu, Shumansky, Karey, Rosner, Jamie, Wan, Adrian, McKinney, Steven, Morin, Gregg B., Nakanishi, Atsushi, Shah, Sohrab, Toyoshiba, Hiroyoshi, Aparicio, Samuel. CLK-dependent exon recognition and conjoined gene formation revealed with a novel small molecule inhibitor. Nature communications, vol.8, no.1, 7-7.

  97. https://www.thesgc.org/chemical-probes/T3-CLK (accessed 23 May 2021). 

  98. Muraki, Michiko, Ohkawara, Bisei, Hosoya, Takamitsu, Onogi, Hiroshi, Koizumi, Jun, Koizumi, Tomonobu, Sumi, Kengo, Yomoda, Jun-ichiro, Murray, Michael V., Kimura, Hiroshi, Furuichi, Kiyoshi, Shibuya, Hiroshi, Krainer, Adrian R., Suzuki, Masaaki, Hagiwara, Masatoshi. Manipulation of Alternative Splicing by a Newly Developed Inhibitor of Clks. The Journal of biological chemistry, vol.279, no.23, 24246-24254.

  99. Mott, B.T., Tanega, C., Shen, M., Maloney, D.J., Shinn, P., Leister, W., Marugan, J.J., Inglese, J., Austin, C.P., Misteli, T., Auld, D.S., Thomas, C.J.. Evaluation of substituted 6-arylquinazolin-4-amines as potent and selective inhibitors of cdc2-like kinases (Clk). Bioorganic & medicinal chemistry letters, vol.19, no.23, 6700-6705.

  100. Riggs, Jennifer R., Nagy, Mark, Elsner, Jan, Erdman, Paul, Cashion, Dan, Robinson, Dale, Harris, Roy, Huang, Dehua, Tehrani, Lida, Deyanat-Yazdi, Gordafaried, Narla, Rama Krishna, Peng, Xiaohui, Tran, Tam, Barnes, Leo, Miller, Terra, Katz, Jason, Tang, Yang, Chen, Ming, Moghaddam, Mehran F., Bahmanyar, Sogole, Pagarigan, Barbra, Delker, Silvia, LeBrun, Laurie, Chamberlain, Philip P., Calabrese, Andrew, Canan, Stacie S., Leftheris, Katerina, Zhu, Dan, Boylan, John F.. The Discovery of a Dual TTK Protein Kinase/CDC2-Like Kinase (CLK2) Inhibitor for the Treatment of Triple Negative Breast Cancer Initiated from a Phenotypic Screen. Journal of medicinal chemistry, vol.60, no.21, 8989-9002.

  101. Zhu, Dan, Xu, Shuichan, Deyanat-Yazdi, Gordafaried, Peng, Sophie X., Barnes, Leo A., Narla, Rama Krishna, Tran, Tam, Mikolon, David, Ning, Yuhong, Shi, Tao, Jiang, Ning, Raymon, Heather K., Riggs, Jennifer R., Boylan, John F.. Synthetic Lethal Strategy Identifies a Potent and Selective TTK and CLK1/2 Inhibitor for Treatment of Triple-Negative Breast Cancer with a Compromised G1–S Checkpoint. Molecular cancer therapeutics, vol.17, no.8, 1727-1738.

  102. Riggs, Jennifer R., Elsner, Jan, Cashion, Dan, Robinson, Dale, Tehrani, Lida, Nagy, Mark, Fultz, Kimberly E., Krishna Narla, Rama, Peng, Xiaohui, Tran, Tam, Kulkarni, Ashutosh, Bahmanyar, Sogole, Condroski, Kevin, Pagarigan, Barbra, Fenalti, Gustavo, LeBrun, Laurie, Leftheris, Katerina, Zhu, Dan, Boylan, John F.. Design and Optimization Leading to an Orally Active TTK Protein Kinase Inhibitor with Robust Single Agent Efficacy. Journal of medicinal chemistry, vol.62, no.9, 4401-4410.

  103. Salvador, Fernando, Gomis, Roger R. CLK 2 blockade modulates alternative splicing compromising MYC ‐driven breast tumors. EMBO molecular medicine, vol.10, no.6, e9213-.

  104. 10.2174/1574892810666150617112230 

  105. Shi, Y., Park, J., Lagisetti, C., Zhou, W., Sambucetti, L.C., Webb, T.R.. A triple exon-skipping luciferase reporter assay identifies a new CLK inhibitor pharmacophore. Bioorganic & medicinal chemistry letters, vol.27, no.3, 406-412.

  106. Webb, T. R.; Park, J.; Lagisetti, C. Preparation of purine and pyrrolopyrimidine derivatives as dual clk/the treatment of germ-line mutations of the spliceosome leading to the development of cancers and other human diseases. Patent Appl. WO2018064545A1, 2018. 

  107. Compain, Guillaume, Oumata, Nassima, Clarhaut, Jonathan, Péraudeau, Elodie, Renoux, Brigitte, Galons, Hervé, Papot, Sébastien. A β-glucuronidase-responsive albumin-binding prodrug for potential selective kinase inhibitor-based cancer chemotherapy. European journal of medicinal chemistry, vol.158, 1-6.

  108. Bendjeddou, L.Z., Loaec, N., Villiers, B., Prina, E., Spath, G.F., Galons, H., Meijer, L., Oumata, N.. Exploration of the imidazo[1,2-b]pyridazine scaffold as a protein kinase inhibitor. European journal of medicinal chemistry, vol.125, 696-709.

  109. Degorce, Sébastien L., Anjum, Rana, Dillman, Keith S., Drew, Lisa, Groombridge, Sam D., Halsall, Christopher T., Lenz, Eva M., Lindsay, Nicola A., Mayo, Michele F., Pink, Jennifer H., Robb, Graeme R., Scott, James S., Stokes, Stephen, Xue, Yafeng. Optimization of permeability in a series of pyrrolotriazine inhibitors of IRAK4. Bioorganic & medicinal chemistry, vol.26, no.4, 913-924.

  110. Murár, Miroslav, Dobiaš, Juraj, Šramel, Peter, Addová, Gabriela, Hanquet, Gilles, Boháč, Andrej. Novel CLK1 inhibitors based on N-aryloxazol-2-amine skeleton - A possible way to dual VEGFR2 TK/CLK ligands. European journal of medicinal chemistry, vol.126, 754-761.

  111. Das, Debasis, Hong, Jian. Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. European journal of medicinal chemistry, vol.170, 55-72.

  112. Probe reports from the NIH molecular libraries program Rosenthal A. S. 2010 

  113. Němec, Václav, Hylsová, Michaela, Maier, Lukáš, Flegel, Jana, Sievers, Sonja, Ziegler, Slava, Schröder, Martin, Berger, Benedict‐Tilman, Chaikuad, Apirat, Valčíková, Barbora, Uldrijan, Stjepan, Drápela, Stanislav, Souček, Karel, Waldmann, Herbert, Knapp, Stefan, Paruch, Kamil. Furo[3,2‐b]pyridine: A Privileged Scaffold for Highly Selective Kinase Inhibitors and Effective Modulators of the Hedgehog Pathway. Angewandte Chemie. international edition, vol.58, no.4, 1062-1066.

  114. Němec, Václav, Maier, Lukáš, Berger, Benedict-Tilman, Chaikuad, Apirat, Drápela, Stanislav, Souček, Karel, Knapp, Stefan, Paruch, Kamil. Highly selective inhibitors of protein kinases CLK and HIPK with the furo[3,2-b]pyridine core. European journal of medicinal chemistry, vol.215, 113299-.

  115. Walter, Anne, Chaikuad, Apirat, Helmer, Renate, Loaëc, Nadège, Preu, Lutz, Ott, Ingo, Knapp, Stefan, Meijer, Laurent, Kunick, Conrad. Molecular structures of cdc2-like kinases in complex with a new inhibitor chemotype. PloS one, vol.13, no.5, e0196761-.

  116. Battistutta, Roberto, Cozza, Giorgio, Pierre, Fabrice, Papinutto, Elena, Lolli, Graziano, Sarno, Stefania, O’Brien, Sean E., Siddiqui-Jain, Adam, Haddach, Mustapha, Anderes, Kenna, Ryckman, David M., Meggio, Flavio, Pinna, Lorenzo A.. Unprecedented Selectivityand Structural Determinantsof a New Class of Protein Kinase CK2 Inhibitors in Clinical Trialsfor the Treatment of Cancer. Biochemistry, vol.50, no.39, 8478-8488.

  117. https://www.biosplice.com/publications/default.aspx (accessed 23 May 2021). 

  118. https://clinicaltrials.gov/ct2/show/NCT02128282 (accessed 23 May 2021). 

  119. Haddach, M., Pierre, F., Regan, C.F., Borsan, C., Michaux, J., Stefan, E., Kerdoncuff, P., Schwaebe, M.K., Chua, P.C., Siddiqui-Jain, A., Macalino, D., Drygin, D., O'Brien, S.E., Rice, W.G., Ryckman, D.M.. Synthesis and SAR of inhibitors of protein kinase CK2: Novel tricyclic quinoline analogs. Bioorganic & medicinal chemistry letters, vol.22, no.1, 45-48.

  120. Kim, Hyeongki, Choi, Kwangman, Kang, Hyunju, Lee, So-Young, Chi, Seung-Wook, Lee, Min-Sung, Song, Jaehyoung, Im, Donghwa, Choi, Yura, Cho, Sungchan. Identification of a Novel Function of CX-4945 as a Splicing Regulator. PloS one, vol.9, no.4, e94978-.

  121. Labriere, C., Lozach, O., Blairvacq, M., Meijer, L., Guillou, C.. Further investigation of Paprotrain: Towards the conception of selective and multi-targeted CNS kinase inhibitors. European journal of medicinal chemistry, vol.124, 920-934.

  122. Falke, Hannes, Chaikuad, Apirat, Becker, Anja, Loaëc, Nadège, Lozach, Olivier, Abu Jhaisha, Samira, Becker, Walter, Jones, Peter G., Preu, Lutz, Baumann, Knut, Knapp, Stefan, Meijer, Laurent, Kunick, Conrad. 10-Iodo-11H-indolo[3,2-c]quinoline-6-carboxylic Acids Are Selective Inhibitors of DYRK1A. Journal of medicinal chemistry, vol.58, no.7, 3131-3143.

  123. Fedorov, Oleg, Huber, Kilian, Eisenreich, Andreas, Filippakopoulos, Panagis, King, Oliver, Bullock, Alex N., Szklarczyk, Damian, Jensen, Lars J., Fabbro, Doriano, Trappe, Jörg, Rauch, Ursula, Bracher, Franz, Knapp, Stefan. Specific CLK Inhibitors from a Novel Chemotype for Regulation of Alternative Splicing. Chemistry & biology, vol.18, no.1, 67-76.

  124. Ono, Tomohisa, Ito, Chihiro, Furukawa, Hiroshi, Wu, Tian-Shung, Kuoh, Chang-Sheng, Hsu, Kuo-Shih. Two New Acridone Alkaloids from Glycosmis Species. Journal of natural products, vol.58, no.10, 1629-1631.

  125. Beniddir, Mehdi A., Le Borgne, Erell, Iorga, Bogdan I., Loaëc, Nadège, Lozach, Olivier, Meijer, Laurent, Awang, Khalijah, Litaudon, Marc. Acridone Alkaloids from Glycosmis chlorosperma as DYRK1A Inhibitors. Journal of natural products, vol.77, no.5, 1117-1122.

  126. Sonamoto, Rie, Kii, Isao, Koike, Yuka, Sumida, Yuto, Kato-Sumida, Tomoe, Okuno, Yukiko, Hosoya, Takamitsu, Hagiwara, Masatoshi. Identification of a DYRK1A Inhibitor that Induces Degradation of the Target Kinase using Co-chaperone CDC37 fused with Luciferase nanoKAZ. Scientific reports, vol.5, 12728-.

  127. Shibata, Saiko, Ajiro, Masahiko, Hagiwara, Masatoshi. Mechanism-Based Personalized Medicine for Cystic Fibrosis by Suppressing Pseudo Exon Inclusion. Cell chemical biology, vol.27, no.12, 1472-1482.e6.

  128. 10.2174/1389557511313130007 

  129. Tahtouh, Tania, Elkins, Jonathan M., Filippakopoulos, Panagis, Soundararajan, Meera, Burgy, Guillaume, Durieu, Emilie, Cochet, Claude, Schmid, Ralf S., Lo, Donald C., Delhommel, Florent, Oberholzer, Anselm E., Pearl, Laurence H., Carreaux, François, Bazureau, Jean-Pierre, Knapp, Stefan, Meijer, Laurent. Selectivity, Cocrystal Structures, and Neuroprotective Properties of Leucettines, a Family of Protein Kinase Inhibitors Derived from the Marine Sponge Alkaloid Leucettamine B. Journal of medicinal chemistry, vol.55, no.21, 9312-9330.

  130. Loaëc, Nadège, Attanasio, Eletta, Villiers, Benoît, Durieu, Emilie, Tahtouh, Tania, Cam, Morgane, Davis, Rohan A., Alencar, Aline, Roué, Mélanie, Bourguet-Kondracki, Marie-Lise, Proksch, Peter, Limanton, Emmanuelle, Guiheneuf, Solène, Carreaux, François, Bazureau, Jean-Pierre, Klautau, Michelle, Meijer, Laurent. Marine-Derived 2-Aminoimidazolone Alkaloids. Leucettamine B-Related Polyandrocarpamines Inhibit Mammalian and Protozoan DYRK & CLK Kinases. Marine drugs, vol.15, no.10, 316-.

  131. Schmitt, Christian, Miralinaghi, Parisa, Mariano, Marica, Hartmann, Rolf W., Engel, Matthias. Hydroxybenzothiophene Ketones Are Efficient Pre-mRNA Splicing Modulators Due to Dual Inhibition of Dyrk1A and Clk1/4. ACS medicinal chemistry letters, vol.5, no.9, 963-967.

  132. ElHady, Ahmed K., Abdel-Halim, Mohammad, Abadi, Ashraf H., Engel, Matthias. Development of Selective Clk1 and -4 Inhibitors for Cellular Depletion of Cancer-Relevant Proteins. Journal of medicinal chemistry, vol.60, no.13, 5377-5391.

  133. Sun, Qi-Zheng, Lin, Gui-Feng, Li, Lin-Li, Jin, Xi-Ting, Huang, Lu-Yi, Zhang, Guo, Yang, Wei, Chen, Kai, Xiang, Rong, Chen, Chong, Wei, Yu-Quan, Lu, Guang-Wen, Yang, Sheng-Yong. Discovery of Potent and Selective Inhibitors of Cdc2-Like Kinase 1 (CLK1) as a New Class of Autophagy Inducers. Journal of medicinal chemistry, vol.60, no.14, 6337-6352.

  134. Coombs, T.C., Tanega, C., Shen, M., Wang, J.L., Auld, D.S., Gerritz, S.W., Schoenen, F.J., Thomas, C.J., Aube, J.. Small-molecule pyrimidine inhibitors of the cdc2-like (Clk) and dual specificity tyrosine phosphorylation-regulated (Dyrk) kinases: Development of chemical probe ML315. Bioorganic & medicinal chemistry letters, vol.23, no.12, 3654-3661.

  135. Kc, S. K.; Mak, C. C.; Eastman, B. W.; Marakovits, J. T.; Bollu, V.; Cao, J.; Mittapalli, G. K. Preparation of pyrazole derivatives as modulators of the wnt/β-catenin signaling pathway. Patent Appl. WO2020150545A1, 2020. 

  136. Madabhushi, R., Pan, L., Tsai, L.H.. DNA Damage and Its Links to Neurodegeneration. Neuron, vol.83, no.2, 266-282.

  137. Ross, Christopher A., Truant, Ray. DNA repair: A unifying mechanism in neurodegeneration. Nature, vol.541, no.7635, 34-35.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로