$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A Recommender System for the Additive Manufacturing of Component Inventories Using Machine Learning

Journal of computing and information science in engineering, v.22 no.1, 2022년, pp.011006 -   

Elaheh Ghiasian, Seyedeh (Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260) ,  Lewis, Kemper (Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260)

Abstract AI-Helper 아이콘AI-Helper

AbstractTo appropriately leverage the benefits of additive manufacturing (AM), it would be advantageous if a printing could be guaranteed before allocating the necessary resources. Furthermore, when considering AM for an inventory of existing components traditionally fabricated through traditional m...

참고문헌 (45)

  1. Ghiasian 2019 10.1115/DETC2019-97840 A Design Modification System for Additive Manufacturing: Towards Feasible Geometry Development 

  2. Lu 2018 10.1115/DETC2018-85996 Self-Improving Additive Manufacturing Knowledge Management 

  3. CIRP J. Manuf. Sci. Technol. Adam 7 1 20 2014 10.1016/j.cirpj.2013.10.001 Design for Additive Manufacturing-Element Transitions and Aggregated Structures 

  4. ASME J. Mech. Des. Lopez 138 11 114502 2016 10.1115/1.4034103 Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models 

  5. ASME J. Mech. Des. Ghiasian 142 8 082001 2019 10.1115/1.4045604 A Preference-Based Approach to Assess a Component’s Design Readiness for Additive Manufacturing 

  6. ACM Trans. Graph. Stava 31 4 48 2012 10.1145/2185520.2185544 Stress Relief: Improving Structural Strength of 3D Printable Objects 

  7. Virtual Phys. Prototyp. Kumke 11 1 3 2016 10.1080/17452759.2016.1139377 A New Methodological Framework for Design for Additive Manufacturing 

  8. Procedia CIRP Vayre 3 1 632 2012 10.1016/j.procir.2012.07.108 Designing for Additive Manufacturing 

  9. Doubrovski 2011 10.1115/DETC2011-48131 Optimal Design for Additive Manufacturing: Opportunities and Challenges 

  10. Int. J. Adv. Manuf. Technol. Yang 80 1-4 327 2015 10.1007/s00170-015-6994-5 Additive Manufacturing-Enabled Design Theory and Methodology: A Critical Review 

  11. Rapid Prototyp. J. Tang 22 3 569 2016 10.1108/RPJ-01-2015-0011 A Survey of the Design Methods for Additive Manufacturing to Improve Functional Performance 

  12. Int. J. Adv. Manuf. Technol. Bikas 83 1-4 389 2016 10.1007/s00170-015-7576-2 Additive Manufacturing Methods and Modelling Approaches: A Critical Review 

  13. ASME J. Mech. Des. Schmelzle 137 11 111404 2015 10.1115/1.4031156 (Re) Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing 

  14. Seepersad 921 2012 A Designer’s Guide for Dimensioning and Tolerancing SLS Parts 

  15. ASME J. Comput. Inf. Sci. Eng. Leung 19 2 021013 2019 10.1115/1.4041913 Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies 

  16. ASME J. Comput. Inf. Sci. Eng. Dinar 17 2 021013 2017 10.1115/1.4035787 A Design for Additive Manufacturing Ontology 

  17. ASME J. Comput. Inf. Sci. Eng. Hagedorn 18 2 021009 2018 10.1115/1.4039455 A Knowledge-Based Method for Innovative Design for Additive Manufacturing Supported by Modular Ontologies 

  18. ASME J. Comput. Inf. Sci. Eng. Kim 19 4 041014 2019 10.1115/1.4043531 A Design for Additive Manufacturing Ontology to Support Manufacturability Analysis 

  19. Addit. Manuf. Conner 1 64 2014 10.1016/j.addma.2014.08.005 Making Sense of 3D-Printing: Creating a Map of Additive Manufacturing Products and Services 

  20. Rapid Prototyp. J. Lindemann 21 2 216 2015 10.1108/RPJ-12-2014-0179 Towards a Sustainable and Economic Selection of Part Candidates for Additive Manufacturing 

  21. Ghiasian 2018 10.1115/DETC2018-86238 From Conventional to Additive Manufacturing: Determining Component Fabrication Feasibility 

  22. Comput. Aided Des. Jaiswal 109 1 2018 10.1016/j.cad.2018.12.001 A Geometric Reasoning Approach for Additive Manufacturing Print Quality Assessment and Automated Model Correction 

  23. ACM Trans. Graph. Luo 31 6 1 2012 10.1145/2366145.2366148 Chopper: Partitioning Models Into 3D-Printable Parts 

  24. Razvi 2019 10.1115/DETC2019-98415 A Review of Machine Learning Applications in Additive Manufacturing 

  25. Rapid Prototyp. J. Yao 23 6 983 2017 10.1108/RPJ-03-2016-0041 A Hybrid Machine Learning Approach for Additive Manufacturing Design Feature Recommendation 

  26. Proc. Inst. Mech. Eng. B Munguia 223 8 995 2009 10.1243/09544054JEM1324 Neural-Network-Based Model for Build-Time Estimation in Selective Laser Sintering 

  27. Int. J. Adv. Manuf. Technol. Angelo 57 1-4 215 2011 10.1007/s00170-011-3284-8 A Neural Network-Based Build Time Estimator for Layer Manufactured Objects 

  28. J. Manuf. Syst. Chan 46 115 2018 10.1016/j.jmsy.2017.12.001 Data-Driven Cost Estimation for Additive Manufacturing in Cyber Manufacturing 

  29. Opt. Lasers Eng. Lu 48 5 519 2010 10.1016/j.optlaseng.2010.01.002 The Prediction of the Building Precision in the Laser Engineered Net Shaping Process Using Advanced Networks 

  30. Chowdhury 2016 10.1115/MSEC2016-8784 Artificial Neural Network Based Geometric Compensation for Thermal Deformation in Additive Manufacturing Processes 

  31. ASME J. Manuf. Sci. Eng. Khanzadeh 140 3 031011 2018 10.1115/1.4038598 Quantifying Geometric Accuracy With Unsupervised Machine Learning: Using Self-Organizing Map on Fused Filament Fabrication Additive Manufacturing Parts 

  32. CIRP Ann. Manuf. Technol. Zhu 67 1 157 2018 10.1016/j.cirp.2018.04.119 Machine Learning in Tolerancing for Additive Manufacturing 

  33. ASME J. Comput. Inf. Sci. Eng. Akhil 20 2 021010 2020 10.1115/1.4045719 Image Data-Based Surface Texture Characterization and Prediction Using Machine Learning Approaches for Additive Manufacturing 

  34. Graph. Model Image Process. Cohen-Or 57 6 453 1995 10.1006/gmip.1995.1039 Fundamentals of Surface Voxelization 

  35. ASME J. Manuf. Sci. Eng. Nelaturi 137 2 021015 2015 10.1115/1.4029374 Manufacturability Feedback and Model Correction for Additive Manufacturing 

  36. Int. J. Comput. Sci. Kotsiantis 1 2 111 2006 Data Preprocessing for Supervised Leaning 

  37. J. Comput. Sci. Shalabi 2 9 735 2006 10.3844/jcssp.2006.735.739 Data Mining: A Preprocessing Engine 

  38. Sabbagh 2018 10.1115/DETC2018-85865 Supplier Clustering Based on Unstructured Manufacturing Capability Data 

  39. The Elements of Statistical Learning: Data Mining, Inference, and Prediction Hastie 2009 10.1007/978-0-387-84858-7 

  40. IOSR J. Eng. Madhulatha 2 4 719 2012 10.9790/3021-0204719725 An Overview on Clustering Methods 

  41. J. Classif. Murtagh 31 3 274 2014 10.1007/s00357-014-9161-z Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? 

  42. Parallel Comput. Olson 21 8 1313 1995 10.1016/0167-8191(95)00017-I Parallel Algorithms for Hierarchical Clustering 

  43. Int. J. Adv. Res. Comput. Sci. Manage. Stud. Kodinariya 1 6 90 2013 Review on Determining Number of Cluster in k-Means Clustering 

  44. AIAA J. Messac 34 1 149 1996 10.2514/3.13035 Physical Programming-Effective Optimization for Computational Design 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로