$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Visualization and Quantification of Genetically Adapted Microbial Cells During Preculture 원문보기

Frontiers in microbiology, v.12, 2021년, pp.693464 -   

Kim, Hyun Ju (Department of Systems Biotechnology, Institute of Microbiomics, Chung-Ang University , Anseong , South Korea) ,  Jeong, Haeyoung (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , South Korea) ,  Lee, Sang Jun (Department of Systems Biotechnology, Institute of Microbiomics, Chung-Ang University , Anseong , South Korea)

Abstract AI-Helper 아이콘AI-Helper

As culture history is known to affect the length of the lag phase and microbial cell growth, precultures are often grown in the same medium as the main culture for physiological adaptation and to reduce a prolonged lag time in some microbial cells. To understand the adaptation process of microbial c...

Keyword

참고문헌 (33)

  1. Adkar B. V. Manhart M. Bhattacharyya S. Tian J. Musharbash M. Shakhnovich E. I. ( 2017 ). Optimization of lag phase shapes the evolution of a bacterial enzyme. Nat. Ecol. Evol. 1 : 149 . 

  2. Baba T. Ara T. Hasegawa M. Takai Y. Okumura Y. Baba M. ( 2006 ). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2 : 2006.0008 . 

  3. Bamford R. A. Smith A. Metz J. Glover G. Titball R. W. Pagliara S. ( 2017 ). Investigating the physiology of viable but non-culturable bacteria by microfluidics and time-lapse microscopy. BMC Biol. 15 : 121 . 10.1186/s12915-017-0465-4 29262826 

  4. Baym M. Lieberman T. D. Kelsic E. D. Chait R. Gross R. Yelin I. ( 2016 ). Spatiotemporal microbial evolution on antibiotic landscapes. Science 353 1147 – 1151 . 10.1126/science.aag0822 27609891 

  5. Bertrand R. L. ( 2014 ). Lag phase-associated iron accumulation is likely a microbial counter-strategy to host iron sequestration: role of the ferric uptake regulator (fur). J. Theor. Biol. 359 72 – 79 . 10.1016/j.jtbi.2014.05.039 24929040 

  6. Buchanan R. Solberg M. ( 1972 ). Interaction of sodium nitrite, oxygen and pH on growth of Staphylococcus aureus . J. Food Sci. 37 81 – 85 . 10.1111/j.1365-2621.1972.tb03391.x 

  7. Dean A. C. ( 1957 ). The adaptation of bacterial cultures during the lag phase in media containing new substrates or antibacterial agents. Proc. R. Soc. Lond. B Biol. Sci. 147 247 – 257 . 10.1098/rspb.1957.0047 13465719 

  8. Fridman O. Goldberg A. Ronin I. Shoresh N. Balaban N. Q. ( 2014 ). Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513 418 – 421 . 10.1038/nature13469 25043002 

  9. Gefen O. Fridman O. Ronin I. Balaban N. Q. ( 2014 ). Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity. Proc. Natl. Acad. Sci. U.S.A. 111 556 – 561 . 10.1073/pnas.1314114111 24344288 

  10. Jeong H. Barbe V. Lee C. H. Vallenet D. Yu D. S. Choi S. H. ( 2009 ). Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). J. Mol. Biol. 394 644 – 652 . 10.1016/j.jmb.2009.09.052 19786035 

  11. Levin-Reisman I. Fridman O. Balaban N. Q. ( 2014 ). ScanLag: high-throughput quantification of colony growth and lag time. J. Vis. Exp. 89 : 51456 . 

  12. Levin-Reisman I. Gefen O. Fridman O. Ronin I. Shwa D. Sheftel H. ( 2010 ). Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes. Nat. Methods 7 737 – 739 . 10.1038/nmeth.1485 20676109 

  13. Madar D. Dekel E. Bren A. Zimmer A. Porat Z. Alon U. ( 2013 ). Promoter activity dynamics in the lag phase of Escherichia coli . BMC Syst. Biol. 7 : 136 . 10.1186/1752-0509-7-136 24378036 

  14. Miller J. H. ( 1992 ). A Short Course in Bacterial Genetics : A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY : Cold Spring Harbor Laboratory Press . 

  15. Monod J. ( 1949 ). The growth of bacterial cultures. Annu. Rev. Microbiol. 3 371 – 394 . 10.1146/annurev.mi.03.100149.002103 

  16. Moreno-Gamez S. Kiviet D. J. Vulin C. Schlegel S. Schlegel K. Van Doorn G. S. ( 2020 ). Wide lag time distributions break a trade-off between reproduction and survival in bacteria. Proc. Natl. Acad. Sci. U.S.A. 117 18729 – 18736 . 10.1073/pnas.2003331117 32669426 

  17. Nikel P. I. Romero-Campero F. J. Zeidman J. A. Goni-Moreno A. De Lorenzo V. ( 2015 ). The glycerol-dependent metabolic persistence of Pseudomonas putida KT2440 reflects the regulatory logic of the GlpR repressor. mBio 6 : e00340-15 . 

  18. Paliy O. Gunasekera T. S. ( 2007 ). Growth of E. coli BL21 in minimal media with different gluconeogenic carbon sources and salt contents. Appl. Microbiol. Biotechnol. 73 1169 – 1172 . 10.1007/s00253-006-0554-8 16944129 

  19. Pedelacq J. D. Cabantous S. Tran T. Terwilliger T. C. Waldo G. S. ( 2006 ). Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24 79 – 88 . 10.1038/nbt1172 16369541 

  20. Pirt S. J. ( 1975 ). Principles of Microbe and Cell Cultivation: Halsted Press book . New York, NY : Wiley . 10.1002/aic.690220342 

  21. Reyes L. H. Winkler J. Kao K. C. ( 2012 ). Visualizing evolution in real-time method for strain engineering. Front. Microbiol. 3 : 198 . 10.3389/fmicb.2012.00198 22661973 

  22. Robinson T. P. Aboaba O. O. Kaloti A. Ocio M. J. Baranyi J. Mackey B. M. ( 2001 ). The effect of inoculum size on the lag phase of Listeria monocytogenes . Int. J. Food Microbiol. 70 163 – 173 . 10.1016/s0168-1605(01)00541-4 11759754 

  23. Rolfe M. D. Rice C. J. Lucchini S. Pin C. Thompson A. Cameron A. D. ( 2012 ). Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J. Bacteriol. 194 686 – 701 . 10.1128/jb.06112-11 22139505 

  24. Seol W. Shatkin A. J. ( 1991 ). Escherichia coli kgtP encodes an alpha-ketoglutarate transporter. Proc. Natl. Acad. Sci. U.S.A. 88 3802 – 3806 . 10.1073/pnas.88.9.3802 2053984 

  25. Seol W. Shatkin A. J. ( 1992 ). Escherichia coli alpha-ketoglutarate permease is a constitutively expressed proton symporter. J. Biol. Chem. 267 6409 – 6413 . 10.1016/s0021-9258(18)42710-x 1556144 

  26. Smith A. Kaczmar A. Bamford R. A. Smith C. Frustaci S. Kovacs-Simon A. ( 2018 ). The culture environment influences both gene regulation and phenotypic heterogeneity in Escherichia coli . Front. Microbiol. 9 : 1739 . 10.3389/fmicb.2018.01739 30158905 

  27. Solopova A. Van Gestel J. Weissing F. J. Bachmann H. Teusink B. Kok J. ( 2014 ). Bet-hedging during bacterial diauxic shift. Proc. Natl. Acad. Sci. U.S.A. 111 7427 – 7432 . 10.1073/pnas.1320063111 24799698 

  28. Srivastava A. K. Volesky B. ( 1990 ). Characterization of transient cultures of Clostridium acetobutylicum . Biotechnol. Prog. 6 408 – 420 . 10.1021/bp00006a002 

  29. van Boxtel C. Van Heerden J. H. Nordholt N. Schmidt P. Bruggeman F. J. ( 2017 ). Taking chances and making mistakes: non-genetic phenotypic heterogeneity and its consequences for surviving in dynamic environments. J. R. Soc. Interface 14 : 20170141 . 10.1098/rsif.2017.0141 28701503 

  30. Vermeersch L. Perez-Samper G. Cerulus B. Jariani A. Gallone B. Voordeckers K. ( 2019 ). On the duration of the microbial lag phase. Curr. Genet. 65 721 – 727 . 10.1007/s00294-019-00938-2 30666394 

  31. Widdel F. ( 2007 ). Theory and measurement of bacterial growth. Di Dalam Grundpraktikum Mikrobiol. 4 1 – 11 . 

  32. Wielgoss S. Barrick J. E. Tenaillon O. Cruveiller S. Chane-Woon-Ming B. Medigue C. ( 2011 ). Mutation rate inferred from synonymous substitutions in a long-term evolution experiment with Escherichia coli . G3 (Bethesda) 1 183 – 186 . 10.1534/g3.111.000406 22207905 

  33. Worner S. Strecker A. Monzel C. Zeltner M. Witan J. Ebert-Jung A. ( 2016 ). Conversion of the sensor kinase DcuS of Escherichia coli of the DcuB/DcuS sensor complex to the C4 -dicarboxylate responsive form by the transporter DcuB. Environ. Microbiol. 18 4920 – 4930 . 10.1111/1462-2920.13418 27318186 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로