$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Metabolomic Studies for the Evaluation of Toxicity Induced by Environmental Toxicants on Model Organisms 원문보기

Metabolites, v.11 no.8, 2021년, pp.485 -   

Kim, Hyung Min ,  Kang, Jong Seong

Abstract AI-Helper 아이콘AI-Helper

Environmental pollution causes significant toxicity to ecosystems. Thus, acquiring a deeper understanding of the concentration of environmental pollutants in ecosystems and, clarifying their potential toxicities is of great significance. Environmental metabolomics is a powerful technique in investig...

Keyword

참고문헌 (189)

  1. 1. Liang Y. Tan Q. Song Q. Li J. An analysis of the plastic waste trade and management in Asia Waste Manag. 2021 119 242 253 10.1016/j.wasman.2020.09.049 33091837 

  2. 2. Blettler M.C. Wantzen K.M. Threats underestimated in freshwater plastic pollution: Mini-review Water Air Soil Pollut. 2019 230 1 11 10.1007/s11270-019-4220-z 

  3. 3. Mezzelani M. Nardi A. Bernardini I. Milan M. Peruzza L. d’Errico G. Fattorini D. Gorbi S. Patarnello T. Regoli F. Environmental pharmaceuticals and climate change: The case study of carbamazepine in M. galloprovincialis under ocean acidification scenario Environ. Int. 2021 146 106269 10.1016/j.envint.2020.106269 33248345 

  4. 4. Balmer J.E. Morris A.D. Hung H. Jantunen L. Vorkamp K. Rigét F. Evans M. Houde M. Muir D.C. Levels and trends of current-use pesticides (CUPs) in the arctic: An updated review, 2010–2018 Emerg. Contam. 2019 5 70 88 10.1016/j.emcon.2019.02.002 

  5. 5. Yang L. Zhou Y. Shi B. Meng J. He B. Yang H. Yoon S.J. Kim T. Kwon B.-O. Khim J.S. Anthropogenic impacts on the contamination of pharmaceuticals and personal care products (PPCPs) in the coastal environments of the Yellow and Bohai seas Environ. Int. 2020 135 105306 10.1016/j.envint.2019.105306 31881428 

  6. 6. Jones O.A.H. Green P.G. Voulvoulis N. Lester J.N. Questioning the Excessive Use of Advanced Treatment to Remove Organic Micropollutants from Wastewater Environ. Sci. Technol. 2007 41 5085 5089 10.1021/es0628248 17711227 

  7. 7. Huang Q. Liu Y. Chen Y. Fang C. Chi Y. Zhu H. Lin Y. Ye G. Dong S. New insights into the metabolism and toxicity of bisphenol A on marine fish under long-term exposure Environ. Pollut. 2018 242 914 921 10.1016/j.envpol.2018.07.048 30373036 

  8. 8. Zhang X. Wen K. Ding D. Liu J. Lei Z. Chen X. Ye G. Zhang J. Shen H. Yan C. Size-dependent adverse effects of microplastics on intestinal microbiota and metabolic homeostasis in the marine medaka (Oryzias melastigma) Environ. Int. 2021 151 106452 10.1016/j.envint.2021.106452 33639345 

  9. 9. Cong Y. Jin F. Wang J. Mu J. The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma Aquat. Toxicol. 2017 185 11 18 10.1016/j.aquatox.2017.01.006 28157544 

  10. 10. Sun D. Chen Q. Zhu B. Lan Y. Duan S. Long-term exposure to benzo [a] pyrene affects sexual differentiation and embryos toxicity in three generations of marine Medaka (Oryzias melastigma) Int. J. Environ. Res. Public Health 2020 17 970 10.3390/ijerph17030970 

  11. 11. Hansen B.H. Sørensen L. Størseth T.R. Altin D. Gonzalez S.V. Skancke J. Rønsberg M.U. Nordtug T. The use of PAH, metabolite and lipid profiling to assess exposure and effects of produced water discharges on pelagic copepods Sci. Total Environ. 2020 714 136674 10.1016/j.scitotenv.2020.136674 31982742 

  12. 12. Aru V. Balling Engelsen S. Savorani F. Culurgioni J. Sarais G. Atzori G. Cabiddu S. Marincola F.C. The effect of season on the metabolic profile of the European clam Ruditapes decussatus as studied by 1H-NMR spectroscopy Metabolites 2017 7 36 10.3390/metabo7030036 

  13. 13. Wang L. Huang X. Sun W. Too H.Z. Laserna A.K.C. Li S.F.Y. A global metabolomic insight into the oxidative stress and membrane damage of copper oxide nanoparticles and microparticles on microalga Chlorella vulgaris Environ. Pollut. 2020 258 113647 10.1016/j.envpol.2019.113647 31810715 

  14. 14. Hu B. Shao S. Ni H. Fu Z. Hu L. Zhou Y. Min X. She S. Chen S. Huang M. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level Environ. Pollut. 2020 266 114961 10.1016/j.envpol.2020.114961 32622003 

  15. 15. Manisalidis I. Stavropoulou E. Stavropoulos A. Bezirtzoglou E. Environmental and health impacts of air pollution: A review Front. Public Health 2020 8 14 10.3389/fpubh.2020.00014 32154200 

  16. 16. Yao X. Zhang F. Qiao Z. Yu H. Sun S. Li X. Zhang J. Jiang X. Toxicity of thifluzamide in earthworm (Eisenia fetida) Ecotoxicol. Environ. Saf. 2020 188 109880 10.1016/j.ecoenv.2019.109880 31711777 

  17. 17. Zhu L. Li B. Wu R. Li W. Wang J. Wang J. Du Z. Juhasz A. Zhu L. Acute toxicity, oxidative stress and DNA damage of chlorpyrifos to earthworms (Eisenia fetida): The difference between artificial and natural soils Chemosphere 2020 255 126982 10.1016/j.chemosphere.2020.126982 32416393 

  18. 18. Kim H.M. Lee D.-K. Long N.P. Kwon S.W. Park J.H. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans Environ. Pollut. 2019 246 578 586 10.1016/j.envpol.2018.12.043 30597390 

  19. 19. Kim H.M. Long N.P. Min J.E. Anh N.H. Kim S.J. Yoon S.J. Kwon S.W. Comprehensive phenotyping and multi-omic profiling in the toxicity assessment of nanopolystyrene with different surface properties J. Hazard. Mater. 2020 399 123005 10.1016/j.jhazmat.2020.123005 32937704 

  20. 20. Geng N. Song X. Cao R. Luo Y. Mila A. Cai Z. Yu K. Gao Y. Ni Y. Zhang H. The effect of toxic components on metabolomic response of male SD rats exposed to fine particulate matter Environ. Pollut. 2021 272 115922 10.1016/j.envpol.2020.115922 33139092 

  21. 21. Du X. Zeng X. Pan K. Zhang J. Song L. Zhou J. Chen R. Xie Y. Sun Q. Zhao J. Metabolomics analysis of urine from healthy wild type mice exposed to ambient PM2.5 Sci. Total Environ. 2020 714 136790 10.1016/j.scitotenv.2020.136790 31982767 

  22. 22. Blaženović I. Kind T. Sa M.R. Ji J. Vaniya A. Wancewicz B. Roberts B.S. Torbašinović H. Lee T. Mehta S.S. Structure annotation of all mass spectra in untargeted metabolomics Anal. Chem. 2019 91 2155 2162 10.1021/acs.analchem.8b04698 30608141 

  23. 23. Long N.P. Nghi T.D. Kang Y.P. Anh N.H. Kim H.M. Park S.K. Kwon S.W. Toward a standardized strategy of clinical metabolomics for the advancement of precision medicine Metabolites 2020 10 51 10.3390/metabo10020051 32013105 

  24. 24. Labine L.M. Simpson M.J. The use of nuclear magnetic resonance (NMR) and mass spectrometry (MS)–based metabolomics in environmental exposure assessment Curr. Opin. Environ. Sci. Health 2020 15 7 15 10.1016/j.coesh.2020.01.008 

  25. 25. Gil-Solsona R. Álvarez-Muñoz D. Serra-Compte A. Rodríguez-Mozaz S. (Xeno) Metabolomics for the evaluation of aquatic organism’s exposure to field contaminated water Trends Environ. Anal. Chem. 2021 31 e00132 10.1016/j.teac.2021.e00132 

  26. 26. Kovacevic V. Simpson M.J. Fundamentals of environmental metabolomics Environmental Metabolomics Elsevier Amsterdam, The Netherlands 2020 1 33 

  27. 27. Liang D. Moutinho J.L. Golan R. Yu T. Ladva C.N. Niedzwiecki M. Walker D.I. Sarnat S.E. Chang H.H. Greenwald R. Use of high-resolution metabolomics for the identification of metabolic signals associated with traffic-related air pollution Environ. Int. 2018 120 145 154 10.1016/j.envint.2018.07.044 30092452 

  28. 28. Matich E.K. Soria N.G.C. Aga D.S. Atilla-Gokcumen G.E. Applications of metabolomics in assessing ecological effects of emerging contaminants and pollutants on plants J. Hazard. Mater. 2019 373 527 535 10.1016/j.jhazmat.2019.02.084 30951997 

  29. 29. Xu T. Zhang M. Hu J. Li Z. Wu T. Bao J. Wu S. Lei L. He D. Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements Chemosphere 2017 181 55 62 10.1016/j.chemosphere.2017.04.068 28426941 

  30. 30. Pan H. Zhang X. Ren B. Yang H. Ren Z. Wang W. Toxic assessment of cadmium based on online swimming behavior and the continuous AChE activity in the gill of zebrafish (Danio rerio) Water Air Soil Pollut. 2017 228 1 9 10.1007/s11270-017-3540-0 29225380 

  31. 31. Duan J. Hu H. Zhang Y. Feng L. Shi Y. Miller M.R. Sun Z. Multi-organ toxicity induced by fine particulate matter PM2. 5 in zebrafish (Danio rerio) model Chemosphere 2017 180 24 32 10.1016/j.chemosphere.2017.04.013 28391149 

  32. 32. Li S.-W. How C.M. Liao V.H.-C. Prolonged exposure of di (2-ethylhexyl) phthalate induces multigenerational toxic effects in Caenorhabditis elegans Sci. Total Environ. 2018 634 260 266 10.1016/j.scitotenv.2018.03.355 29627549 

  33. 33. Ge J. Xiao Y. Chai Y. Yan H. Wu R. Xin X. Wang D. Yu X. Sub-lethal effects of six neonicotinoids on avoidance behavior and reproduction of earthworms (Eisenia fetida) Ecotoxicol. Environ. Saf. 2018 162 423 429 10.1016/j.ecoenv.2018.06.064 30015188 

  34. 34. Iummato M.M. Sabatini S.E. Cacciatore L.C. Cochón A.C. Cataldo D. de Molina M.d.C.R. Juárez Á.B. Biochemical responses of the golden mussel Limnoperna fortunei under dietary glyphosate exposure Ecotoxicol. Environ. Saf. 2018 163 69 75 10.1016/j.ecoenv.2018.07.046 30041128 

  35. 35. Nogueira A.F. Pinto G. Correia B. Nunes B. Embryonic development, locomotor behavior, biochemical, and epigenetic effects of the pharmaceutical drugs paracetamol and ciprofloxacin in larvae and embryos of Danio rerio when exposed to environmental realistic levels of both drugs Environ. Toxicol. 2019 34 1177 1190 10.1002/tox.22819 31322327 

  36. 36. Qu M. Wang D. Toxicity comparison between pristine and sulfonate modified nanopolystyrene particles in affecting locomotion behavior, sensory perception, and neuronal development in Caenorhabditis elegans Sci. Total Environ. 2020 703 134817 10.1016/j.scitotenv.2019.134817 31715464 

  37. 37. Hemalatha D. Rangasamy B. Nataraj B. Maharajan K. Narayanasamy A. Ramesh M. Transcriptional, biochemical and histological alterations in adult zebrafish (Danio rerio) exposed to benzotriazole ultraviolet stabilizer-328 Sci. Total Environ. 2020 739 139851 10.1016/j.scitotenv.2020.139851 32758936 

  38. 38. Sousa A.P. Nunes B. Standard and biochemical toxicological effects of zinc pyrithione in Daphnia magna and Daphnia longispina Environ. Toxicol. Pharmacol. 2020 80 103402 10.1016/j.etap.2020.103402 32693026 

  39. 39. Yuan N. Pei Y. Bao A. Wang C. The Physiological and Biochemical Responses of Daphnia magna to Dewatered Drinking Water Treatment Residue Int. J. Environ. Res. Public Health 2020 17 5863 10.3390/ijerph17165863 32823506 

  40. 40. Gowri S. Thangaraj R. Studies on the toxic effects of agrochemical pesticide (Monocrotophos) on physiological and reproductive behavior of indigenous and exotic earthworm species Int. J. Environ. Health Res. 2020 30 212 225 10.1080/09603123.2019.1590538 30897939 

  41. 41. Cong Y. Wang Y. Zhang M. Jin F. Mu J. Li Z. Wang J. Lethal, behavioral, growth and developmental toxicities of alkyl-PAHs and non-alkyl PAHs to early-life stage of brine shrimp, Artemia parthenogenetica Ecotoxicol. Environ. Saf. 2021 220 112302 10.1016/j.ecoenv.2021.112302 34015631 

  42. 42. Yang W. Gao P. Ma G. Huang J. Wu Y. Wan L. Ding H. Zhang W. Transcriptome analysis of the toxic mechanism of nanoplastics on growth, photosynthesis and oxidative stress of microalga Chlorella pyrenoidosa during chronic exposure Environ. Pollut. 2021 284 117413 10.1016/j.envpol.2021.117413 34049161 

  43. 43. Fraga-Corral M. Carpena M. Garcia-Oliveira P. Pereira A. Prieto M. Simal-Gandara J. Analytical metabolomics and applications in health, environmental and food science Crit. Rev. Anal. Chem. 2020 1 23 10.1080/10408347.2020.1823811 

  44. 44. Percival B.C. Grootveld M. Gibson M. Osman Y. Molinari M. Jafari F. Sahota T. Martin M. Casanova F. Mather M.L. Low-field, benchtop NMR spectroscopy as a potential tool for point-of-care diagnostics of metabolic conditions: Validation, protocols and computational models High-Throughput 2019 8 2 10.3390/ht8010002 

  45. 45. Locci E. Bazzano G. Chighine A. Locco F. Ferraro E. Demontis R. d’Aloja E. Forensic NMR metabolomics: One more arrow in the quiver Metabolomics 2020 16 1 16 10.1007/s11306-020-01743-6 

  46. 46. Grootveld M. Percival B. Gibson M. Osman Y. Edgar M. Molinari M. Mather M.L. Casanova F. Wilson P.B. Progress in low-field benchtop NMR spectroscopy in chemical and biochemical analysis Anal. Chim. Acta 2019 1067 11 30 10.1016/j.aca.2019.02.026 31047142 

  47. 47. Crook A.A. Powers R. Quantitative NMR-Based Biomedical Metabolomics: Current Status and Applications Molecules 2020 25 5128 10.3390/molecules25215128 33158172 

  48. 48. Simpson A.J. Simpson M.J. Soong R. Environmental nuclear magnetic resonance spectroscopy: An overview and a primer Anal. Chem. 2018 90 628 639 10.1021/acs.analchem.7b03241 29131590 

  49. 49. Augustijn D. de Groot H.J. Alia A. HR-MAS NMR applications in plant metabolomics Molecules 2021 26 931 10.3390/molecules26040931 33578691 

  50. 50. de Souza L.P. Alseekh S. Naake T. Fernie A. Mass Spectrometry-Based Untargeted Plant Metabolomics Curr. Protoc. Plant Biol. 2019 4 10.1002/cppb.20100 

  51. 51. Cajka T. Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics Anal. Chem. 2016 88 524 545 10.1021/acs.analchem.5b04491 26637011 

  52. 52. Longnecker K. Futrelle J. Coburn E. Soule M.C.K. Kujawinski E.B. Environmental metabolomics: Databases and tools for data analysis Mar. Chem. 2015 177 366 373 10.1016/j.marchem.2015.06.012 

  53. 53. Kusano M. Yang Z. Okazaki Y. Nakabayashi R. Fukushima A. Saito K. Using metabolomic approaches to explore chemical diversity in rice Mol. Plant 2015 8 58 67 10.1016/j.molp.2014.11.010 25578272 

  54. 54. Zhang W. Ramautar R. CE-MS for metabolomics: Developments and applications in the period 2018–2020 Electrophoresis 2021 42 381 401 10.1002/elps.202000203 32906195 

  55. 55. Stettin D. Poulin R.X. Pohnert G. Metabolomics Benefits from Orbitrap GC–MS—Comparison of Low-and High-Resolution GC–MS Metabolites 2020 10 143 10.3390/metabo10040143 32260407 

  56. 56. Scott E.R. Li X. Kfoury N. Morimoto J. Han W.-Y. Ahmed S. Cash S.B. Griffin T.S. Stepp J.R. Robbat A. Jr. Interactive effects of drought severity and simulated herbivory on tea (Camellia sinensis) volatile and non-volatile metabolites Environ. Exp. Bot. 2019 157 283 292 10.1016/j.envexpbot.2018.10.025 

  57. 57. Ren J.-L. Zhang A.-H. Kong L. Wang X.-J. Advances in mass spectrometry-based metabolomics for investigation of metabolites RSC Adv. 2018 8 22335 22350 10.1039/C8RA01574K 

  58. 58. Beale D.J. Pinu F.R. Kouremenos K.A. Poojary M.M. Narayana V.K. Boughton B.A. Kanojia K. Dayalan S. Jones O.A. Dias D.A. Review of recent developments in GC–MS approaches to metabolomics-based research Metabolomics 2018 14 1 31 10.1007/s11306-018-1449-2 29249916 

  59. 59. Liebeke M. Puskás E. Drying enhances signal intensities for global GC–MS metabolomics Metabolites 2019 9 68 10.3390/metabo9040068 

  60. 60. Hassan H.A. Ammar N.M. Serag A. Shaker O.G. El Gendy A.N. Abdel-Hamid A.-H.Z. Metabolomics driven analysis of obesity-linked colorectal cancer patients via GC-MS and chemometrics: A pilot study Microchem. J. 2020 155 104742 10.1016/j.microc.2020.104742 

  61. 61. Cui L. Lu H. Lee Y.H. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases Mass Spectrom. Rev. 2018 37 772 792 10.1002/mas.21562 29486047 

  62. 62. Blaženović I. Kind T. Ji J. Fiehn O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics Metabolites 2018 8 31 10.3390/metabo8020031 

  63. 63. Chetwynd A.J. David A. A review of nanoscale LC-ESI for metabolomics and its potential to enhance the metabolome coverage Talanta 2018 182 380 390 10.1016/j.talanta.2018.01.084 29501168 

  64. 64. Xu Y.-F. Lu W. Rabinowitz J.D. Avoiding misannotation of in-source fragmentation products as cellular metabolites in liquid chromatography–mass spectrometry-based metabolomics Anal. Chem. 2015 87 2273 2281 10.1021/ac504118y 25591916 

  65. 65. Xian F. Hendrickson C.L. Marshall A.G. High resolution mass spectrometry Anal. Chem. 2012 84 708 719 10.1021/ac203191t 22263633 

  66. 66. Kind T. Tsugawa H. Cajka T. Ma Y. Lai Z. Mehta S.S. Wohlgemuth G. Barupal D.K. Showalter M.R. Arita M. Identification of small molecules using accurate mass MS/MS search Mass Spectrom. Rev. 2018 37 513 532 10.1002/mas.21535 28436590 

  67. 67. Yuan M. Breitkopf S.B. Yang X. Asara J.M. A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue Nat. Protoc. 2012 7 872 10.1038/nprot.2012.024 22498707 

  68. 68. Ye Y. Zhan H. Yu X. Li J. Wang X. Xie Z. Detection of organosulfates and nitrooxy-organosulfates in Arctic and Antarctic atmospheric aerosols, using ultra-high resolution FT-ICR mass spectrometry Sci. Total Environ. 2021 767 144339 10.1016/j.scitotenv.2020.144339 33434833 

  69. 69. Naz S. Gallart-Ayala H. Reinke S.N. Mathon C. Blankley R. Chaleckis R. Wheelock C.E. Development of a liquid chromatography–high resolution mass spectrometry metabolomics method with high specificity for metabolite identification using all ion fragmentation acquisition Anal. Chem. 2017 89 7933 7942 10.1021/acs.analchem.7b00925 28641411 

  70. 70. Cajka T. Smilowitz J.T. Fiehn O. Validating quantitative untargeted lipidomics across nine liquid chromatography–high-resolution mass spectrometry platforms Anal. Chem. 2017 89 12360 12368 10.1021/acs.analchem.7b03404 29064229 

  71. 71. Dudzik D. Barbas-Bernardos C. García A. Barbas C. Quality assurance procedures for mass spectrometry untargeted metabolomics. a review J. Pharm. Biomed. Anal. 2018 147 149 173 10.1016/j.jpba.2017.07.044 28823764 

  72. 72. Bonvallot N. David A. Chalmel F. Chevrier C. Cordier S. Cravedi J.-P. Zalko D. Metabolomics as a powerful tool to decipher the biological effects of environmental contaminants in humans Curr. Opin. Toxicol. 2018 8 48 56 10.1016/j.cotox.2017.12.007 

  73. 73. Gehrke S. Reisz J.A. Nemkov T. Hansen K.C. D’Alessandro A. Characterization of rapid extraction protocols for high-throughput metabolomics Rapid Commun. Mass Spectrom. 2017 31 1445 1452 10.1002/rcm.7916 28586533 

  74. 74. Mastroianni G. Scognamiglio M. Russo C. Fiorentino A. Lavorgna M. Environmental Metabolomics: A Powerful Tool to Investigate Biochemical Responses to Drugs in Nontarget Organisms Fate and Effects of Anticancer Drugs in the Environment Springer Berlin/Heidelberg, Germany 2020 441 465 

  75. 75. Lin C.Y. Wu H. Tjeerdema R.S. Viant M.R. Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics Metabolomics 2007 3 55 67 10.1007/s11306-006-0043-1 

  76. 76. Yan S.-C. Chen Z.-F. Zhang H. Chen Y. Qi Z. Liu G. Cai Z. Evaluation and optimization of sample pretreatment for GC/MS-based metabolomics in embryonic zebrafish Talanta 2020 207 120260 10.1016/j.talanta.2019.120260 31594598 

  77. 77. Geier F.M. Want E.J. Leroi A.M. Bundy J.G. Cross-platform comparison of Caenorhabditis elegans tissue extraction strategies for comprehensive metabolome coverage Anal. Chem. 2011 83 3730 3736 10.1021/ac2001109 21480661 

  78. 78. Chen S. Hoene M. Li J. Li Y. Zhao X. Häring H.-U. Schleicher E.D. Weigert C. Xu G. Lehmann R. Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry J. Chromatogr. A 2013 1298 9 16 10.1016/j.chroma.2013.05.019 23743007 

  79. 79. Medina J. van der Velpen V. Teav T. Guitton Y. Gallart-Ayala H. Ivanisevic J. Single-Step Extraction Coupled with Targeted HILIC-MS/MS Approach for Comprehensive Analysis of Human Plasma Lipidome and Polar Metabolome Metabolites 2020 10 495 10.3390/metabo10120495 

  80. 80. Ibáñez C. Simó C. Palazoglu M. Cifuentes A. GC-MS based metabolomics of colon cancer cells using different extraction solvents Anal. Chim. Acta 2017 986 48 56 10.1016/j.aca.2017.07.019 28870325 

  81. 81. Moros G. Chatziioannou A.C. Gika H.G. Raikos N. Theodoridis G. Investigation of the derivatization conditions for GC–MS metabolomics of biological samples Bioanalysis 2017 9 53 65 10.4155/bio-2016-0224 27921459 

  82. 82. He Z. Luo Q. Liu Z. Gong L. Extensive evaluation of sample preparation workflow for gas chromatography-mass spectrometry-based plasma metabolomics and its application in rheumatoid arthritis Anal. Chim. Acta 2020 1131 136 145 10.1016/j.aca.2020.06.029 32928474 

  83. 83. Poole C.F. New trends in solid-phase extraction TrAC Trends Anal. Chem. 2003 22 362 373 10.1016/S0165-9936(03)00605-8 

  84. 84. Tang D.Q. Zou L. Yin X.X. Ong C.N. HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS Mass Spectrom. Rev. 2016 35 574 600 10.1002/mas.21445 25284160 

  85. 85. Spagou K. Tsoukali H. Raikos N. Gika H. Wilson I.D. Theodoridis G. Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies J. Sep. Sci. 2010 33 716 727 10.1002/jssc.200900803 20187037 

  86. 86. Zhou B. Xiao J.F. Tuli L. Ressom H.W. LC-MS-based metabolomics Mol. BioSyst. 2012 8 470 481 10.1039/C1MB05350G 22041788 

  87. 87. Contrepois K. Jiang L. Snyder M. Optimized analytical procedures for the untargeted metabolomic profiling of human urine and plasma by combining hydrophilic interaction (HILIC) and reverse-phase liquid chromatography (RPLC)–mass spectrometry Mol. Cell. Proteom. 2015 14 1684 1695 10.1074/mcp.M114.046508 

  88. 88. Schwaiger M. Schoeny H. El Abiead Y. Hermann G. Rampler E. Koellensperger G. Merging metabolomics and lipidomics into one analytical run Analyst 2019 144 220 229 10.1039/C8AN01219A 

  89. 89. Liu Z. Ezernieks V. Rochfort S. Cocks B. Comparison of methylation methods for fatty acid analysis of milk fat Food Chem. 2018 261 210 215 10.1016/j.foodchem.2018.04.053 29739585 

  90. 90. Ooi M. Nishiumi S. Yoshie T. Shiomi Y. Kohashi M. Fukunaga K. Nakamura S. Matsumoto T. Hatano N. Shinohara M. GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis Inflamm. Res. 2011 60 831 840 10.1007/s00011-011-0340-7 21523508 

  91. 91. Lu Y. Gao K. Li X. Tang Z. Xiang L. Zhao H. Fu J. Wang L. Zhu N. Cai Z. Mass spectrometry-based metabolomics reveals occupational exposure to per-and polyfluoroalkyl substances relates to oxidative stress, fatty acid β-oxidation disorder, and kidney injury in a manufactory in China Environ. Sci. Technol. 2019 53 9800 9809 10.1021/acs.est.9b01608 31246438 

  92. 92. Lebedev A.T. Polyakova O.V. Mazur D.M. Artaev V.B. The benefits of high resolution mass spectrometry in environmental analysis Analyst 2013 138 6946 6953 10.1039/c3an01237a 24087826 

  93. 93. Feith A. Teleki A. Graf M. Favilli L. Takors R. HILIC-enabled 13C metabolomics strategies: Comparing quantitative precision and spectral accuracy of QTOF high-and QQQ low-resolution mass spectrometry Metabolites 2019 9 63 10.3390/metabo9040063 

  94. 94. Cao G. Song Z. Hong Y. Yang Z. Song Y. Chen Z. Chen Z. Cai Z. Large-scale targeted metabolomics method for metabolite profiling of human samples Anal. Chim. Acta 2020 1125 144 151 10.1016/j.aca.2020.05.053 32674760 

  95. 95. Reisz J.A. Zheng C. D’Alessandro A. Nemkov T. Untargeted and semi-targeted lipid analysis of biological samples using mass spectrometry-based metabolomics High-Throughput Metabolomics Springer Berlin/Heidelberg, Germany 2019 121 135 

  96. 96. Yuan P. Dong M. Lei H. Xu G. Chen G. Song Y. Ma J. Cheng L. Zhang L. Targeted metabolomics reveals that 2, 3, 7, 8-tetrachlorodibenzofuran exposure induces hepatic steatosis in male mice Environ. Pollut. 2020 259 113820 10.1016/j.envpol.2019.113820 31918130 

  97. 97. Domingo-Almenara X. Montenegro-Burke J.R. Ivanisevic J. Thomas A. Sidibé J. Teav T. Guijas C. Aisporna A.E. Rinehart D. Hoang L. XCMS-MRM and METLIN-MRM: A cloud library and public resource for targeted analysis of small molecules Nat. Methods 2018 15 681 684 10.1038/s41592-018-0110-3 30150755 

  98. 98. Guo J. Huan T. Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography–Mass Spectrometry Based Untargeted Metabolomics Anal. Chem. 2020 92 8072 8080 10.1021/acs.analchem.9b05135 32401506 

  99. 99. Barbier Saint Hilaire P. Rousseau K. Seyer A. Dechaumet S. Damont A. Junot C. Fenaille F. Comparative Evaluation of Data Dependent and Data Independent Acquisition Workflows Implemented on an Orbitrap Fusion for Untargeted Metabolomics Metabolites 2020 10 158 10.3390/metabo10040158 32325648 

  100. 100. Hemmer S. Manier S.K. Fischmann S. Westphal F. Wagmann L. Meyer M.R. Comparison of three untargeted data processing workflows for evaluating LC-HRMS metabolomics data Metabolites 2020 10 378 10.3390/metabo10090378 

  101. 101. Li Z. Lu Y. Guo Y. Cao H. Wang Q. Shui W. Comprehensive evaluation of untargeted metabolomics data processing software in feature detection, quantification and discriminating marker selection Anal. Chim. Acta 2018 1029 50 57 10.1016/j.aca.2018.05.001 29907290 

  102. 102. Beger R.D. Dunn W.B. Bandukwala A. Bethan B. Broadhurst D. Clish C.B. Dasari S. Derr L. Evans A. Fischer S. Towards quality assurance and quality control in untargeted metabolomics studies Metabolomics 2019 15 4 10.1007/s11306-018-1460-7 30830465 

  103. 103. Dunn W.B. Broadhurst D.I. Edison A. Guillou C. Viant M.R. Bearden D.W. Beger R.D. Quality assurance and quality control processes: Summary of a metabolomics community questionnaire Metabolomics 2017 13 50 10.1007/s11306-017-1188-9 

  104. 104. Broadhurst D. Goodacre R. Reinke S.N. Kuligowski J. Wilson I.D. Lewis M.R. Dunn W.B. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies Metabolomics 2018 14 1 17 10.1007/s11306-018-1367-3 29249916 

  105. 105. Katajamaa M. Orešič M. Data processing for mass spectrometry-based metabolomics J. Chromatogr. A 2007 1158 318 328 10.1016/j.chroma.2007.04.021 17466315 

  106. 106. Karaman I. Preprocessing and Pretreatment of Metabolomics Data for Statistical Analysis Metabolomics: From Fundamentals to Clinical Applications Springer Cham, Switzerland 2017 145 161 

  107. 107. Nam S.L. Mata A. Dias R.P. Harynuk J.J. Towards Standardization of Data Normalization Strategies to Improve Urinary Metabolomics Studies by GC× GC-TOFMS Metabolites 2020 10 376 10.3390/metabo10090376 

  108. 108. Pluskal T. Castillo S. Villar-Briones A. Orešič M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data BMC Bioinform. 2010 11 1 11 10.1186/1471-2105-11-395 20650010 

  109. 109. Tsugawa H. Cajka T. Kind T. Ma Y. Higgins B. Ikeda K. Kanazawa M. VanderGheynst J. Fiehn O. Arita M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis Nat. Methods 2015 12 523 526 10.1038/nmeth.3393 25938372 

  110. 110. Smith C.A. Want E.J. O’Maille G. Abagyan R. Siuzdak G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification Anal. Chem. 2006 78 779 787 10.1021/ac051437y 16448051 

  111. 111. Worley B. Powers R. Multivariate analysis in metabolomics Curr. Metab. 2013 1 92 107 

  112. 112. Ruiz-Perez D. Guan H. Madhivanan P. Mathee K. Narasimhan G. So you think you can PLS-DA? BMC Bioinform. 2020 21 1 10 10.1186/s12859-019-3310-7 

  113. 113. Vinaixa M. Samino S. Saez I. Duran J. Guinovart J.J. Yanes O. A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data Metabolites 2012 2 775 795 10.3390/metabo2040775 24957762 

  114. 114. Smith C.A. O’Maille G. Want E.J. Qin C. Trauger S.A. Brandon T.R. Custodio D.E. Abagyan R. Siuzdak G. METLIN: A metabolite mass spectral database Ther. Drug Monit. 2005 27 747 751 10.1097/01.ftd.0000179845.53213.39 16404815 

  115. 115. Fahy E. Subramaniam S. Murphy R.C. Nishijima M. Raetz C.R. Shimizu T. Spener F. van Meer G. Wakelam M.J. Dennis E.A. Update of the LIPID MAPS comprehensive classification system for lipids J. Lipid Res. 2009 50 S9 S14 10.1194/jlr.R800095-JLR200 19098281 

  116. 116. Wishart D.S. Feunang Y.D. Marcu A. Guo A.C. Liang K. Vázquez-Fresno R. Sajed T. Johnson D. Li C. Karu N. HMDB 4.0: The human metabolome database for 2018 Nucleic Acids Res. 2018 46 D608 D617 10.1093/nar/gkx1089 29140435 

  117. 117. Xia J. Wishart D.S. MetPA: A web-based metabolomics tool for pathway analysis and visualization Bioinformatics 2010 26 2342 2344 10.1093/bioinformatics/btq418 20628077 

  118. 118. Capela R. Garric J. Castro L.F.C. Santos M.M. Embryo bioassays with aquatic animals for toxicity testing and hazard assessment of emerging pollutants: A review Sci. Total Environ. 2020 705 135740 10.1016/j.scitotenv.2019.135740 31838430 

  119. 119. van de Merwe J.P. Neale P.A. Melvin S.D. Leusch F.D. In vitro bioassays reveal that additives are significant contributors to the toxicity of commercial household pesticides Aquat. Toxicol. 2018 199 263 268 10.1016/j.aquatox.2018.03.033 29677588 

  120. 120. Heinlaan M. Kasemets K. Aruoja V. Blinova I. Bondarenko O. Lukjanova A. Khosrovyan A. Kurvet I. Pullerits M. Sihtmäe M. Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity Sci. Total Environ. 2020 707 136073 10.1016/j.scitotenv.2019.136073 31869615 

  121. 121. Hashmi M.Z. Kumar V. Varma A. Xenobiotics in the Soil Environment: Monitoring, Toxicity and Management Springer Berlin/Heidelberg, Germany 2017 Volume 49 

  122. 122. Abdelsalam N.A. Ramadan A.T. ElRakaiby M.T. Aziz R.K. Toxicomicrobiomics: The Human Microbiome vs. Pharmaceutical, Dietary, and Environmental Xenobiotics Front. Pharmacol. 2020 11 390 10.3389/fphar.2020.00390 32372951 

  123. 123. de Oliveira M. Frihling B.E.F. Velasques J. Magalhães Filho F.J.C. Cavalheri P.S. Migliolo L. Pharmaceuticals residues and xenobiotics contaminants: Occurrence, analytical techniques and sustainable alternatives for wastewater treatment Sci. Total Environ. 2020 705 135568 10.1016/j.scitotenv.2019.135568 31846817 

  124. 124. Nieto-García A.J. Domínguez I. Romero-González R. Arrebola F.J. Vidal J.L.M. Frenich A.G. Automated determination of xenobiotics (pesticides, PCBs, PAHs, and PBDEs) in sediment samples applying HS-SPME-GC-HRMS J. AOAC Int. 2019 102 38 45 10.5740/jaoacint.18-0295 30305207 

  125. 125. Fatta-Kassinos D. Kalavrouziotis I.K. Koukoulakis P.H. Vasquez M. The risks associated with wastewater reuse and xenobiotics in the agroecological environment Sci. Total Environ. 2011 409 3555 3563 10.1016/j.scitotenv.2010.03.036 20435343 

  126. 126. Thelusmond J.-R. Strathmann T.J. Cupples A.M. Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils Sci. Total Environ. 2019 657 1138 1149 10.1016/j.scitotenv.2018.12.145 30677881 

  127. 127. Byrns G. The fate of xenobiotic organic compounds in wastewater treatment plants Water Res. 2001 35 2523 2533 10.1016/S0043-1354(00)00529-7 11394788 

  128. 128. Bond T. Ferrandiz-Mas V. Felipe-Sotelo M. Van Sebille E. The occurrence and degradation of aquatic plastic litter based on polymer physicochemical properties: A review Crit. Rev. Environ. Sci. Technol. 2018 48 685 722 10.1080/10643389.2018.1483155 

  129. 129. Rodríguez A. Castrejón-Godínez M.L. Salazar-Bustamante E. Gama-Martínez Y. Sánchez-Salinas E. Mussali-Galante P. Tovar-Sánchez E. Ortiz-Hernández M.L. Omics approaches to pesticide biodegradation Curr. Microbiol. 2020 77 545 563 10.1007/s00284-020-01916-5 32078006 

  130. 130. Xu Y. Dai S. Meng K. Wang Y. Ren W. Zhao L. Christie P. Teng Y. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils Sci. Total Environ. 2018 630 618 629 10.1016/j.scitotenv.2018.02.212 29494971 

  131. 131. Haque E. Ward A.C. Zebrafish as a model to evaluate nanoparticle toxicity Nanomaterials 2018 8 561 10.3390/nano8070561 30041434 

  132. 132. Keller J.M. Keller E.T. The use of mature zebrafish (Danio rerio) as a model for human aging and disease Conn’s Handbook of Models for Human Aging 2nd ed. Academic Press Cambridge, MA, USA 2018 351 359 10.1016/B978-0-12-811353-0.00026-9 

  133. 133. Hollert H. Keiter S.H. Danio rerio as a model in aquatic toxicology and sediment research Environ. Sci. Pollut. Res. 2015 22 16243 16246 10.1007/s11356-015-5362-1 

  134. 134. Tkaczyk A. Bownik A. Dudka J. Kowal K. Ślaska B. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review Sci. Total Environ. 2020 763 143038 10.1016/j.scitotenv.2020.143038 33127157 

  135. 135. Blaser R. Chadwick L. McGinnis G. Behavioral measures of anxiety in zebrafish (Danio rerio) Behav. Brain Res. 2010 208 56 62 10.1016/j.bbr.2009.11.009 19896505 

  136. 136. Sancho E. Villarroel M. Fernández C. Andreu E. Ferrando M. Short-term exposure to sublethal tebuconazole induces physiological impairment in male zebrafish (Danio rerio) Ecotoxicol. Environ. Saf. 2010 73 370 376 10.1016/j.ecoenv.2009.09.020 19896710 

  137. 137. Brenner S. The genetics of Caenorhabditis elegans Genetics 1974 77 71 94 10.1093/genetics/77.1.71 4366476 

  138. 138. Chen H. Wang C. Li H. Ma R. Yu Z. Li L. Xiang M. Chen X. Hua X. Yu Y. A review of toxicity induced by persistent organic pollutants (POPs) and endocrine-disrupting chemicals (EDCs) in the nematode Caenorhabditis elegans J. Environ. Manag. 2019 237 519 525 10.1016/j.jenvman.2019.02.102 

  139. 139. Ficociello G. Inverni A. Massimi L. Buccini G. Canepari S. Uccelletti D. Assessment of the effects of atmospheric pollutants using the animal model Caenorhabditis elegans Environ. Res. 2020 191 110209 10.1016/j.envres.2020.110209 32937173 

  140. 140. Zhang D. Gersberg R.M. Ng W.J. Tan S.K. Removal of pharmaceuticals and personal care products in aquatic plant-based systems: A review Environ. Pollut. 2014 184 620 639 10.1016/j.envpol.2013.09.009 24080393 

  141. 141. Wang J. Wang S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review J. Environ. Manag. 2016 182 620 640 10.1016/j.jenvman.2016.07.049 

  142. 142. Chen X. Vollertsen J. Nielsen J.L. Dall A.G. Bester K. Degradation of PPCPs in activated sludge from different WWTPs in Denmark Ecotoxicology 2015 24 2073 2080 10.1007/s10646-015-1548-z 26407712 

  143. 143. Pérez-Lemus N. López-Serna R. Pérez-Elvira S.I. Barrado E. Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review Anal. Chim. Acta 2019 1083 19 40 10.1016/j.aca.2019.06.044 31493808 

  144. 144. Dumas T. Boccard J. Gomez E. Fenet H. Courant F. Multifactorial analysis of environmental metabolomic data in ecotoxicology: Wild marine mussel exposed to wwtp effluent as a case study Metabolites 2020 10 269 10.3390/metabo10070269 

  145. 145. Dumas T. Bonnefille B. Gomez E. Boccard J. Castro N.A. Fenet H. Courant F. Metabolomics approach reveals disruption of metabolic pathways in the marine bivalve Mytilus galloprovincialis exposed to a WWTP effluent extract Sci. Total Environ. 2020 712 136551 10.1016/j.scitotenv.2020.136551 31945539 

  146. 146. Ryan B. Medriano C.D. Cho Y. Kim H. Chung I.-Y. Seok K.-S. Song K.G. Hong S.W. Park Y. Kim S. Sub-lethal pharmaceutical hazard tracking in adult zebrafish using untargeted LC–MS environmental metabolomics J. Hazard. Mater. 2017 339 63 72 28623724 

  147. 147. Fu J. Tan Y.X.R. Gong Z. Bae S. The toxic effect of triclosan and methyl-triclosan on biological pathways revealed by metabolomics and gene expression in zebrafish embryos Ecotoxicol. Environ. Saf. 2020 189 110039 10.1016/j.ecoenv.2019.110039 31830605 

  148. 148. Teplova V.V. Belosludtsev K.N. Kruglov A.G. Mechanism of triclosan toxicity: Mitochondrial dysfunction including complex II inhibition, superoxide release and uncoupling of oxidative phosphorylation Toxicol. Lett. 2017 275 108 117 10.1016/j.toxlet.2017.05.004 28478158 

  149. 149. Gillis J.D. Price G.W. Prasher S. Lethal and sub-lethal effects of triclosan toxicity to the earthworm Eisenia fetida assessed through GC–MS metabolomics J. Hazard. Mater. 2017 323 203 211 10.1016/j.jhazmat.2016.07.022 27468629 

  150. 150. Kim H.M. Long N.P. Yoon S.J. Nguyen H.T. Kwon S.W. Metabolomics and phenotype assessment reveal cellular toxicity of triclosan in Caenorhabditis elegans Chemosphere 2019 236 124306 10.1016/j.chemosphere.2019.07.037 31319312 

  151. 151. Yu Y. Zhu Y. Yang J. Zhu W. Zhou Z. Zhang R. Effects of Dufulin on Oxidative Stress and Metabolomic Profile of Tubifex Metabolites 2021 11 381 10.3390/metabo11060381 34208357 

  152. 152. Sharma A. Kumar V. Shahzad B. Tanveer M. Sidhu G.P.S. Handa N. Kohli S.K. Yadav P. Bali A.S. Parihar R.D. Worldwide pesticide usage and its impacts on ecosystem SN Appl. Sci. 2019 1 1 16 10.1007/s42452-019-1485-1 

  153. 153. Fang S. Zhang Y. You X. Sun P. Qiu J. Kong F. Lethal toxicity and sublethal metabolic interference effects of sulfoxaflor on the earthworm (Eisenia fetida) J. Agric. Food Chem. 2018 66 11902 11908 10.1021/acs.jafc.8b04633 30372061 

  154. 154. Alengebawy A. Abdelkhalek S.T. Qureshi S.R. Wang M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications Toxics 2021 9 42 10.3390/toxics9030042 33668829 

  155. 155. Elfikrie N. Ho Y.B. Zaidon S.Z. Juahir H. Tan E.S.S. Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia Sci. Total Environ. 2020 712 136540 10.1016/j.scitotenv.2020.136540 32050383 

  156. 156. Liu N. Zhu L. Metabolomic and transcriptomic investigation of metabolic perturbations in Oryza sativa L. triggered by three pesticides Environ. Sci. Technol. 2020 54 6115 6124 10.1021/acs.est.0c00425 32227873 

  157. 157. Gaylarde C.C. Neto J.A.B. da Fonseca E.M. Nanoplastics in aquatic systems-are they more hazardous than microplastics? Environ. Pollut. 2020 115950 10.1016/j.envpol.2020.115950 33303235 

  158. 158. Baudrimont M. Arini A. Guégan C. Venel Z. Gigault J. Pedrono B. Prunier J. Maurice L. Ter Halle A. Feurtet-Mazel A. Ecotoxicity of polyethylene nanoplastics from the North Atlantic oceanic gyre on freshwater and marine organisms (microalgae and filter-feeding bivalves) Environ. Sci. Pollut. Res. 2020 27 3746 3755 10.1007/s11356-019-04668-3 31044382 

  159. 159. Jambeck J.R. Geyer R. Wilcox C. Siegler T.R. Perryman M. Andrady A. Narayan R. Law K.L. Plastic waste inputs from land into the ocean Science 2015 347 768 771 10.1126/science.1260352 25678662 

  160. 160. Mahana A. Guliy O.I. Mehta S.K. Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: Current status and future challenges Ecotoxicol. Environ. Saf. 2021 208 111662 10.1016/j.ecoenv.2020.111662 33396172 

  161. 161. Chen F. Xiao Z. Yue L. Wang J. Feng Y. Zhu X. Wang Z. Xing B. Algae response to engineered nanoparticles: Current understanding, mechanisms and implications Environ. Sci. Nano 2019 6 1026 1042 10.1039/C8EN01368C 

  162. 162. Huang W. Wang X. Chen D. Xu E.G. Luo X. Zeng J. Huan T. Li L. Wang Y. Toxicity Mechanisms of Polystyrene Microplastics in Marine Mussels Revealed by High-Coverage Quantitative Metabolomics Using Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry J. Hazard. Mater. 2021 147 126003 10.1016/j.jhazmat.2021.126003 

  163. 163. Li X. Ban Z. Yu F. Hao W. Hu X. Untargeted metabolic pathway analysis as an effective strategy to connect various nanoparticle properties to nanoparticle-induced ecotoxicity Environ. Sci. Technol. 2020 54 3395 3406 10.1021/acs.est.9b06096 32097552 

  164. 164. Li D. Suh S. Health risks of chemicals in consumer products: A review Environ. Int. 2019 123 580 587 10.1016/j.envint.2018.12.033 30622082 

  165. 165. McGrath T.J. Ball A.S. Clarke B.O. Critical review of soil contamination by polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs); concentrations, sources and congener profiles Environ. Pollut. 2017 230 741 757 10.1016/j.envpol.2017.07.009 28732337 

  166. 166. Ji F. Wei J. Luan H. Li M. Cai Z. Study of metabolic disorders associated with BDE-47 exposure in Drosophila model by MS-based metabolomics Ecotoxicol. Environ. Saf. 2019 184 109606 10.1016/j.ecoenv.2019.109606 31472382 

  167. 167. Ji F. Sreenivasmurthy S.G. Wei J. Shao X. Luan H. Zhu L. Song J. Liu L. Li M. Cai Z. Study of BDE-47 induced Parkinson’s disease-like metabolic changes in C57BL/6 mice by integrated metabolomic, lipidomic and proteomic analysis J. Hazard. Mater. 2019 378 120738 10.1016/j.jhazmat.2019.06.015 31203119 

  168. 168. Jurek A. Leitner E. Analytical determination of bisphenol A (BPA) and bisphenol analogues in paper products by GC-MS/MS Food Addit. Contam. Part A 2017 34 1225 1238 10.1080/19440049.2017.1319076 

  169. 169. Vilarinho F. Sendón R. van der Kellen A. Vaz M. Silva A.S. Bisphenol A in food as a result of its migration from food packaging Trends Food Sci. Technol. 2019 91 33 65 10.1016/j.tifs.2019.06.012 

  170. 170. Lee S.-W. Chatterjee N. Im J.-E. Yoon D. Kim S. Choi J. Integrated approach of eco-epigenetics and eco-metabolomics on the stress response of bisphenol-A exposure in the aquatic midge Chironomus riparius Ecotoxicol. Environ. Saf. 2018 163 111 116 10.1016/j.ecoenv.2018.06.084 30041127 

  171. 171. Sheikholeslami M.N. Gómez-Canela C. Barron L.P. Barata C. Vosough M. Tauler R. Untargeted metabolomics changes on Gammarus pulex induced by propranolol, triclosan, and nimesulide pharmaceutical drugs Chemosphere 2020 260 127479 10.1016/j.chemosphere.2020.127479 32758777 

  172. 172. Bonnefille B. Gomez E. Alali M. Rosain D. Fenet H. Courant F. Metabolomics assessment of the effects of diclofenac exposure on Mytilus galloprovincialis: Potential effects on osmoregulation and reproduction Sci. Total Environ. 2018 613 611 618 10.1016/j.scitotenv.2017.09.146 28930695 

  173. 173. Serra-Compte A. Álvarez-Muñoz D. Solé M. Cáceres N. Barceló D. Rodríguez-Mozaz S. Comprehensive study of sulfamethoxazole effects in marine mussels: Bioconcentration, enzymatic activities and metabolomics Environ. Res. 2019 173 12 22 10.1016/j.envres.2019.03.021 30884434 

  174. 174. Hua Q. Adamovsky O. Vespalcova H. Boyda J. Schmidt J.T. Kozuch M. Craft S.L. Ginn P.E. Smatana S. Budinska E. Microbiome analysis and predicted relative metabolomic turnover suggest bacterial heme and selenium metabolism are altered in the gastrointestinal system of zebrafish (Danio rerio) exposed to the organochlorine dieldrin Environ. Pollut. 2021 268 115715 10.1016/j.envpol.2020.115715 33069042 

  175. 175. Jia M. Wang Y. Teng M. Wang D. Yan J. Miao J. Zhou Z. Zhu W. Toxicity and metabolomics study of isocarbophos in adult zebrafish (Danio rerio) Ecotoxicol. Environ. Saf. 2018 163 1 6 10.1016/j.ecoenv.2018.07.027 30029080 

  176. 176. Zhang H. Aspinall J.V. Lv W. Zheng X. Zhang H. Li S. Zhang J. Bai N. Zhang Y. Wang X. Differences in kinetic metabolomics in Eisenia fetida under single and dual exposure of imidacloprid and dinotefuran at environmentally relevant concentrations J. Hazard. Mater. 2021 417 126001 10.1016/j.jhazmat.2021.126001 33992008 

  177. 177. Yin J. Hong X. Ma L. Liu R. Bu Y. Non-targeted metabolomic profiling of atrazine in Caenorhabditis elegans using UHPLC-QE Orbitrap/MS Ecotoxicol. Environ. Saf. 2020 206 111170 10.1016/j.ecoenv.2020.111170 32861007 

  178. 178. Pang M. Wang Y. Tang Y. Dai J. Tong J. Jin G. Transcriptome sequencing and metabolite analysis reveal the toxic effects of nanoplastics on tilapia after exposure to polystyrene Environ. Pollut. 2021 277 116860 10.1016/j.envpol.2021.116860 33714129 

  179. 179. Zhao Y. Qiao R. Zhang S. Wang G. Metabolomic profiling reveals the intestinal toxicity of different length of microplastic fibers on zebrafish (Danio rerio) J. Hazard. Mater. 2021 403 123663 10.1016/j.jhazmat.2020.123663 33264870 

  180. 180. Xiang Q.-Q. Yan H. Luo X.-W. Kang Y.-H. Hu J.-M. Chen L.-Q. Integration of transcriptomics and metabolomics reveals damage and recovery mechanisms of fish gills in response to nanosilver exposure Aquat. Toxicol. 2021 237 105895 10.1016/j.aquatox.2021.105895 34147820 

  181. 181. Liu W. Majumdar S. Li W. Keller A.A. Slaveykova V.I. Metabolomics for early detection of stress in freshwater alga Poterioochromonas malhamensis exposed to silver nanoparticles Sci. Rep. 2020 10 1 13 31913322 

  182. 182. Zhu Y. Wu X. Liu Y. Zhang J. Lin D. Integration of transcriptomics and metabolomics reveals the responses of earthworms to the long-term exposure of TiO2 nanoparticles in soil Sci. Total Environ. 2020 719 137492 10.1016/j.scitotenv.2020.137492 32120103 

  183. 183. Maria V.L. Licha D. Scott-Fordsmand J.J. Huber C.G. Amorim M.J. Multiomics assessment in Enchytraeus crypticus exposed to Ag nanomaterials (Ag NM300K) and ions (AgNO 3 )–Metabolomics, proteomics (& transcriptomics) Environ. Pollut. 2021 286 117571 34438494 

  184. 184. Liang R. Chen J. Shi Y. Lu Y. Sarvajayakesavalu S. Xu X. Zheng X. Khan K. Su C. Toxicological effects on earthworms (Eisenia fetida) exposed to sub-lethal concentrations of BDE-47 and BDE-209 from a metabolic point Environ. Pollut. 2018 240 653 660 10.1016/j.envpol.2018.04.145 29775942 

  185. 185. Ortiz-Villanueva E. Navarro-Martín L. Jaumot J. Benavente F. Sanz-Nebot V. Piña B. Tauler R. Metabolic disruption of zebrafish (Danio rerio) embryos by bisphenol A. An integrated metabolomic and transcriptomic approach Environ. Pollut. 2017 231 22 36 10.1016/j.envpol.2017.07.095 28780062 

  186. 186. Mao L. Fang S. Zhao M. Liu W. Jin H. Effects of Bisphenol A and Bisphenol S Exposure at Low Doses on the Metabolome of Adolescent Male Sprague–Dawley Rats Chem. Res. Toxicol. 2021 34 1578 1587 10.1021/acs.chemrestox.1c00018 34019419 

  187. 187. Gu Y.-Y. Wei Q. Wang L.-Y. Zhang Z.-M. Zhang X.-Q. Sun A.-L. Chen J. Shi X.-Z. A comprehensive study of the effects of phthalates on marine mussels: Bioconcentration, enzymatic activities and metabolomics Mar. Pollut. Bull. 2021 168 112393 10.1016/j.marpolbul.2021.112393 33932843 

  188. 188. Morrison N. Bearden D. Bundy J.G. Collette T. Currie F. Davey M.P. Haigh N.S. Hancock D. Jones O.A. Rochfort S. Standard reporting requirements for biological samples in metabolomics experiments: Environmental context Metabolomics 2007 3 203 210 10.1007/s11306-007-0067-1 

  189. 189. Spurgeon D.J. Jones O.A. Dorne J.-L.C. Svendsen C. Swain S. Stürzenbaum S.R. Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures Sci. Total Environ. 2010 408 3725 3734 10.1016/j.scitotenv.2010.02.038 20231031 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로