$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Modified Spirulina maxima Pectin Nanoparticles Improve the Developmental Competence of In Vitro Matured Porcine Oocytes 원문보기

Animals an open access journal from MDPI, v.11 no.9, 2021년, pp.2483 -   

Roy, Pantu-Kumar (College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea) ,  Qamar, Ahmad-Yar (vetpantu88@gmail.com (P.-K.R.)) ,  Tanga, Bereket-Molla (ahmad.qamar@uvas.edu.pk (A.-Y.Q.)) ,  Bang, Seonggyu (tanga@o.cnu.ac.kr (B.-M.T.)) ,  Seong, Gyeonghwan (bangsk97@o.cnu.ac.kr (S.B.)) ,  Fang, Xun (202050377@o.cnu.ac.kr (G.S.)) ,  Kim, Ghangyong (fx2442@o.cnu.ac.kr (X.F.)) ,  Edirisinghe, Shan-Lakmal (gykim1007@gmail.com (G.K.)) ,  De Zoysa, Mahanama (shan.lakmal09011@gmail.com (S.-L.E.)) ,  Kang, Do-Hyung (mahanama@cnu.ac.kr (M.D.Z.)) ,  Saadeldin, Islam M. (islamms@zu.edu.eg (I.M.S.)) ,  Cho, Jongki (College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea)

Abstract AI-Helper 아이콘AI-Helper

Simple SummaryPoor in vitro embryo development is a major obstacle in porcine assisted reproduction. In the current study, we utilized modified Spirulina maxima pectin nanoparticles as a supplement to improve porcine in vitro maturation medium. Results showed that modified Spirulina maxima pectin na...

Keyword

참고문헌 (74)

  1. 1. Saadeldin I.M. Khalil W.A. Alharbi M.G. Lee S.H. The Current Trends in Using Nanoparticles, Liposomes, and Exosomes for Semen Cryopreservation Animals 2020 10 2281 10.3390/ani10122281 

  2. 2. Lucas C.G. Chen P.R. Seixas F.K. Prather R.S. Collares T. Applications of omics and nanotechnology to improve pig embryo production in vitro Mol. Reprod. Dev. 2019 86 1531 1547 10.1002/mrd.23260 31478591 

  3. 3. Neculai-Valeanu A.S. Ariton A.M. Mdescu B.M. Rimbu C.M. Creang . Nanomaterials and Essential Oils as Candidates for Developing Novel Treatment Options for Bovine Mastitis Animals 2021 11 1625 10.3390/ani11061625 34072849 

  4. 4. Abo-Al-Ela H.G. El-Kassas S. El-Naggar K. Abdo S.E. Jahejo A.R. Al Wakeel R.A. Stress and immunity in poultry: Light management and nanotechnology as effective immune enhancers to fight stress Cell Stress Chaperones 2021 26 457 472 10.1007/s12192-021-01204-6 33847921 

  5. 5. Abdelnour S.A. Alagawany M. Hashem N.M. Farag M.R. Alghamdi E.S. Hassan F.U. Bilal R.M. Elnesr S.S. Dawood M.A.O. Nagadi S.A. Nanominerals: Fabrication Methods, Benefits and Hazards, and Their Applications in Ruminants with Special Reference to Selenium and Zinc Nanoparticles Animals 2021 11 1916 10.3390/ani11071916 34203158 

  6. 6. Hashem N.M. Gonzalez-Bulnes A. Nanotechnology and Reproductive Management of Farm Animals: Challenges and Advances Animals 2021 11 1932 10.3390/ani11071932 34209536 

  7. 7. Guisbiers G. Mejia-Rosales S. Leonard Deepak F. Nanomaterial Properties: Size and Shape Dependencies J. Nanomater. 2012 2012 1 2 10.1155/2012/180976 

  8. 8. Jeevanandam J. Barhoum A. Chan Y.S. Dufresne A. Danquah M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations Beilstein J. Nanotechnol. 2018 9 1050 1074 10.3762/bjnano.9.98 29719757 

  9. 9. Lucas C.G. Remiao M.H. Bruinsmann F.A. Lopes I.A.R. Borges M.A. Feijo A.L.S. Basso A.C. Pohlmann A.R. Guterres S.S. Campos V.F. High doses of lipid-core nanocapsules do not affect bovine embryonic development in vitro Toxicol. Vitr. 2017 45 194 201 10.1016/j.tiv.2017.09.013 28923420 

  10. 10. Abdel-Halim B.R. Protective effect of Chitosan nanoparticles against the inhibitory effect of linoleic acid supplementation on maturation and developmental competence of bovine oocytes Theriogenology 2018 114 143 148 10.1016/j.theriogenology.2018.03.032 29625401 

  11. 11. Roy P.K. Qamar A.Y. Fang X. Kim G. Bang S. De Zoysa M. Shin S.T. Cho J. Chitosan nanoparticles enhance developmental competence of in vitro-matured porcine oocytes Reprod. Domest. Anim. 2021 56 342 350 10.1111/rda.13871 33247973 

  12. 12. Bakhtari A. Nazari S. Alaee S. Kargar-Abarghouei E. Mesbah F. Mirzaei E. Molaei M.J. Effects of Dextran-Coated Superparamagnetic Iron Oxide Nanoparticles on Mouse Embryo Development, Antioxidant Enzymes and Apoptosis Genes Expression, and Ultrastructure of Sperm, Oocytes and Granulosa Cells Int. J. Fertil. Steril. 2020 14 161 170 10.22074/ijfs.2020.6167 33098381 

  13. 13. Shehata A.M. Salem F.M.S. El-Saied E.M. Abd El-Rahman S.S. Mahmoud M.Y. Noshy P.A. Zinc Nanoparticles Ameliorate the Reproductive Toxicity Induced by Silver Nanoparticles in Male Rats Int. J. Nanomed. 2021 16 2555 2568 10.2147/IJN.S307189 

  14. 14. Abbasi Y. Hajiaghalou S. Baniasadi F. Mahabadi V.P. Ghalamboran M.R. Fathi R. Fe 3 O 4 magnetic nanoparticles improve the vitrification of mouse immature oocytes and modulate the pluripotent genes expression in derived pronuclear-stage embryos Cryobiology 2021 100 81 89 10.1016/j.cryobiol.2021.03.006 33781804 

  15. 15. El-Naby A.-s.A.-H.H. Ibrahim S. Hozyen H.F. Sosa A.S.A. Mahmoud K.G.M. Farghali A.A. Impact of nano-selenium on nuclear maturation and genes expression profile of buffalo oocytes matured in vitro Mol. Biol. Rep. 2020 47 8593 8603 10.1007/s11033-020-05902-9 33068228 

  16. 16. Ariu F. Bogliolo L. Pinna A. Malfatti L. Innocenzi P. Falchi L. Bebbere D. Ledda S. Cerium oxide nanoparticles (CeO 2 NPs) improve the developmental competence of in vitro-matured prepubertal ovine oocytes Reprod. Fertil. Dev. 2017 29 1046 10.1071/RD15521 28442051 

  17. 17. Li W. Zhou X. Dai J. Zhang D. Liu B. Wang H. Xu L. Effect of hydroxyapatite nanoparticles on MII-stage porcine oocytes vitrification and the study of its mechanism J. Biomed. Eng. = Shengwu Yixue Gongchengxue Zazhi 2013 30 789 793 

  18. 18. Huang C.H. Yeh J.M. Chan W.H. Hazardous impacts of silver nanoparticles on mouse oocyte maturation and fertilization and fetal development through induction of apoptotic processes Environ. Toxicol. 2018 33 1039 1049 10.1002/tox.22590 29964317 

  19. 19. Santacruz-Marquez R. Gonzalez-De los Santos M. Hernandez-Ochoa I. Ovarian toxicity of nanoparticles Reprod. Toxicol. 2021 103 79 95 10.1016/j.reprotox.2021.06.002 34098047 

  20. 20. Lin Y.H. Zhuang S.X. Wang Y.L. Lin S. Hong Z.W. Liu Y. Xu L. Li F.P. Xu B.H. Chen M.H. The effects of graphene quantum dots on the maturation of mouse oocytes and development of offspring J. Cell. Physiol. 2019 234 13820 13831 10.1002/jcp.28062 30644094 

  21. 21. Taylor U. Tiedemann D. Rehbock C. Kues W.A. Barcikowski S. Rath D. Influence of gold, silver and gold?Silver alloy nanoparticles on germ cell function and embryo development Beilstein J. Nanotechnol. 2015 6 651 664 10.3762/bjnano.6.66 25821705 

  22. 22. Karimipour M. Zirak Javanmard M. Ahmadi A. Jafari A. Oral administration of titanium dioxide nanoparticle through ovarian tissue alterations impairs mice embryonic development Int. J. Reprod. Biomed. 2018 16 397 404 10.29252/ijrm.16.6.397 30123868 

  23. 23. Lei R. Bai X. Chang Y. Li J. Qin Y. Chen K. Gu W. Xia S. Zhang J. Wang Z. Effects of Fullerenol Nanoparticles on Rat Oocyte Meiosis Resumption Int. J. Mol. Sci. 2018 19 699 10.3390/ijms19030699 

  24. 24. Wang R. Song B. Wu J. Zhang Y. Chen A. Shao L. Potential adverse effects of nanoparticles on the reproductive system Int. J. Nanomed. 2018 13 8487 8506 10.2147/IJN.S170723 30587973 

  25. 25. Liu J. Zhao Y. Ge W. Zhang P. Liu X. Zhang W. Hao Y. Yu S. Li L. Chu M. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways Oncotarget 2017 8 42673 42692 10.18632/oncotarget.17349 28487501 

  26. 26. Ismail A.A. Abdel-Khalek A.E. Khalil W.A. Yousif A.I. Saadeldin I.M. Abomughaid M.M. El-Harairy M.A. Effects of mint, thyme, and curcumin extract nanoformulations on the sperm quality, apoptosis, chromatin decondensation, enzyme activity, and oxidative status of cryopreserved goat semen Cryobiology 2020 97 144 152 10.1016/j.cryobiol.2020.09.002 32916165 

  27. 27. Mbemya G.T. Vieira L.A. Canafistula F.G. Pessoa O.D.L. Rodrigues A.P.R. Reports on in vivo and in vitro contribution of medicinal plants to improve the female reproductive function Reprod. Clim. 2017 32 109 119 10.1016/j.recli.2016.11.002 

  28. 28. Yang L. Lei L. Zhao Q. Gao Z. Xu X. Lycium barbarum polysaccharide improves the development of mouse oocytes vitrified at the germinal vesicle stage Cryobiology 2018 85 7 11 10.1016/j.cryobiol.2018.10.265 30391282 

  29. 29. Willats W.G. McCartney L. Mackie W. Knox J.P. Pectin: Cell biology and prospects for functional analysis Plant Mol. Biol. 2001 47 9 27 10.1023/A:1010662911148 11554482 

  30. 30. de Moura F.A. Macagnan F.T. Dos Santos L.R. Bizzani M. de Oliveira Petkowicz C.L. da Silva L.P. Characterization and physicochemical properties of pectins extracted from agroindustrial by-products J. Food Sci. Technol. 2017 54 3111 3117 10.1007/s13197-017-2747-9 28974796 

  31. 31. Fracasso A.F. Perussello C.A. Carpine D. Petkowicz C.L.O. Haminiuk C.W.I. Chemical modification of citrus pectin: Structural, physical and rheologial implications Int. J. Biol. Macromol. 2018 109 784 792 10.1016/j.ijbiomac.2017.11.060 29133098 

  32. 32. Wiese M. The potential of pectin to impact pig nutrition and health: Feeding the animal and its microbiome FEMS Microbiol. Lett. 2019 366 fnz029 10.1093/femsle/fnz029 30767016 

  33. 33. Mizera A. Kuczaj M. Szul A. Impact of the Spirulina maxima extract addition to semen extender on bovine sperm quality Ital. J. Anim. Sci. 2019 18 601 607 10.1080/1828051X.2018.1548914 

  34. 34. Barkallah M. Slima A.B. Elleuch F. Fendri I. Pichon C. Abdelkafi S. Baril P. Protective Role of Spirulina platensis Against Bifenthrin-Induced Reprotoxicity in Adult Male Mice by Reversing Expression of Altered Histological, Biochemical, and Molecular Markers Including MicroRNAs Biomolecules 2020 10 753 10.3390/biom10050753 

  35. 35. Lee A.V. You L. Oh S.Y. Li Z. Fisher-Heffernan R.E. Regnault T.R.H. de Lange C.F.M. Huber L. Karrow N.A. Microalgae supplementation to late gestation sows and its effects on the health status of weaned piglets fed diets containing high- or low-quality protein sources Vet. Immunol. Immunopathol. 2019 218 109937 10.1016/j.vetimm.2019.109937 31522084 

  36. 36. Senosy W. Kassab A.Y. Mohammed A.A. Effects of feeding green microalgae on ovarian activity, reproductive hormones and metabolic parameters of Boer goats in arid subtropics Theriogenology 2017 96 16 22 10.1016/j.theriogenology.2017.03.019 28532834 

  37. 37. Edirisinghe S.L. Dananjaya S.H.S. Nikapitiya C. Liyanage T.D. Lee K.A. Oh C. Kang D.H. De Zoysa M. Novel pectin isolated from Spirulina maxima enhances the disease resistance and immune responses in zebrafish against Edwardsiella piscicida and Aeromonas hydrophila Fish Shellfish Immunol. 2019 94 558 565 10.1016/j.fsi.2019.09.054 31546036 

  38. 38. Edirisinghe S.L. Rajapaksha D.C. Nikapitiya C. Oh C. Lee K.-A. Kang D.-H. De Zoysa M. Spirulina maxima derived marine pectin promotes the in vitro and in vivo regeneration and wound healing in zebrafish Fish Shellfish Immunol. 2020 107 414 425 10.1016/j.fsi.2020.10.008 33038507 

  39. 39. Chandrarathna H. Liyanage T.D. Edirisinghe S.L. Dananjaya S.H.S. Thulshan E.H.T. Nikapitiya C. Oh C. Kang D.H. De Zoysa M. Marine Microalgae, Spirulina maxima-Derived Modified Pectin and Modified Pectin Nanoparticles Modulate the Gut Microbiota and Trigger Immune Responses in Mice Mar. Drugs 2020 18 175 10.3390/md18030175 

  40. 40. Park D.S. Kim S. Koo D.-B. Kang M.-J. Current Status of Production of Transgenic Livestock by Genome Editing Technology J. Anim. Reprod. Biotechnol. 2019 34 148 156 10.12750/JARB.34.3.148 

  41. 41. Roy P.K. Qamar A.Y. Fang X. Hassan B.M.S. Cho J. Effects of cobalamin on meiotic resumption and developmental competence of growing porcine oocytes Theriogenology 2020 154 24 30 10.1016/j.theriogenology.2020.05.011 32473446 

  42. 42. Lin T. Lee J.E. Kang J.W. Oqani R.K. Cho E.S. Kim S.B. Il Jin D. Melatonin supplementation during prolonged in vitro maturation improves the quality and development of poor-quality porcine oocytes via anti-oxidative and anti-apoptotic effects Mol. Reprod. Dev. 2018 85 665 681 10.1002/mrd.23052 30106229 

  43. 43. Kim J.-W. Park H.-J. Yang S.-G. Koo D.-B. Anti-oxidative effects of exogenous ganglioside GD1a and GT1b on embryonic developmental competence in pigs J. Anim. Reprod. Biotechnol. 2020 35 347 356 10.12750/JARB.35.4.347 

  44. 44. Cho J. Kim G. Qamar A.Y. Fang X. Roy P.K. Tanga B.M. Bang S. Kim J.K. Galli C. Perota A. Improved efficiencies in the generation of multigene-modified pigs by recloning and using sows as the recipient Zygote 2021 1 8 10.1017/S0967199421000423 

  45. 45. Roy P.K. Qamar A.Y. Tanga B.M. Fang X. Kim G. Bang S. Cho J. Enhancing Oocyte Competence With Milrinone as a Phosphodiesterase 3A Inhibitor to Improve the Development of Porcine Cloned Embryos Front. Cell Dev. Biol. 2021 9 647616 10.3389/fcell.2021.647616 33996810 

  46. 46. Roy P.K. Kim G. Fang X. Hassan B. Soysa M.D. Shin S.T. Cho J.K. Optimization of post-activation systems to improve the embryonic development in porcine parthenogenesis and somatic cell nuclear transfer J. Embryo Transf. 2017 32 95 104 10.12750/JET.2017.32.3.95 

  47. 47. Kim G. Roy P.K. Fang X. Hassan B.M. Cho J. Improved preimplantation development of porcine somatic cell nuclear transfer embryos by caffeine treatment J. Vet. Sci. 2019 20 e31 10.4142/jvs.2019.20.e31 31161749 

  48. 48. Livak K.J. Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 ?ΔΔCT Method Methods 2001 25 402 408 10.1006/meth.2001.1262 11846609 

  49. 49. Wang Z. Wang Z. Nanoparticles induced embryo?fetal toxicity Toxicol. Ind. Health 2020 36 181 213 10.1177/0748233720918689 32539642 

  50. 50. Wen X. Han Z. Liu S.-J. Hao X. Zhang X.-J. Wang X.-Y. Zhou C.-J. Ma Y.-Z. Liang C.-G. Phycocyanin Improves Reproductive Ability in Obese Female Mice by Restoring Ovary and Oocyte Quality Front. Cell Dev. Biol. 2020 8 1208 10.3389/fcell.2020.595373 

  51. 51. Liang S. Guo J. Jin Y.X. Yuan B. Zhang J.B. Kim N.H. C-Phycocyanin supplementation during in vitro maturation enhances pre-implantation developmental competence of parthenogenetic and cloned embryos in pigs Theriogenology 2018 106 69 78 10.1016/j.theriogenology.2017.09.001 29040878 

  52. 52. Wathoni N. Yuan Shan C. Yi Shan W. Rostinawati T. Indradi R.B. Pratiwi R. Muchtaridi M. Characterization and antioxidant activity of pectin from Indonesian mangosteen ( Garcinia mangostana L.) rind Heliyon 2019 5 e02299 10.1016/j.heliyon.2019.e02299 31453406 

  53. 53. Smirnov V.V. Golovchenko V.V. Vityazev F.V. Patova O.A. Selivanov N.Y. Selivanova O.G. Popov S.V. The Antioxidant Properties of Pectin Fractions Isolated from Vegetables Using a Simulated Gastric Fluid J. Chem. 2017 2017 1 10 10.1155/2017/5898594 

  54. 54. Hosseini Abari A. Amini Rourani H. Ghasemi S.M. Kim H. Kim Y.-G. Investigation of antioxidant and anticancer activities of unsaturated oligo-galacturonic acids produced by pectinase of Streptomyces hydrogenans YAM1 Sci. Rep. 2021 11 8491 10.1038/s41598-021-87804-9 33875695 

  55. 55. Ogutu F.O. Mu T.-H. Ultrasonic degradation of sweet potato pectin and its antioxidant activity Ultrason. Sonochem. 2017 38 726 734 10.1016/j.ultsonch.2016.08.014 27617769 

  56. 56. Chen R. Jin C. Tong Z. Lu J. Tan L. Tian L. Chang Q. Optimization extraction, characterization and antioxidant activities of pectic polysaccharide from tangerine peels Carbohydr. Polym. 2016 136 187 197 10.1016/j.carbpol.2015.09.036 26572345 

  57. 57. Kang H.J. Jo C. Kwon J.H. Son J.H. An B.J. Byun M.W. Antioxidant and Cancer Cell Proliferation Inhibition Effect of Citrus Pectin-Oligosaccharide Prepared by Irradiation J. Med. Food 2006 9 313 320 10.1089/jmf.2006.9.313 17004892 

  58. 58. Li T. Li S. Dong Y. Zhu R. Liu Y. Antioxidant activity of penta-oligogalacturonide, isolated from haw pectin, suppresses triglyceride synthesis in mice fed with a high-fat diet Food Chem. 2014 145 335 341 10.1016/j.foodchem.2013.08.036 24128486 

  59. 59. Zhang Y. Guo J. Nie X.W. Li Z.Y. Wang Y.M. Liang S. Li S. Rosmarinic acid treatment during porcine oocyte maturation attenuates oxidative stress and improves subsequent embryo development in vitro PeerJ 2019 7 e6930 10.7717/peerj.6930 31249731 

  60. 60. Gao W. Jin Y. Hao J. Huang S. Wang D. Quan F. Ren W. Zhang J. Zhang M. Yu X. Procyanidin B1 promotes in vitro maturation of pig oocytes by reducing oxidative stress Mol. Reprod. Dev. 2021 88 55 66 10.1002/mrd.23440 33241626 

  61. 61. Choi J.-Y. Kang J.-T. Park S.-J. Kim S.-J. Moon J.-H. Saadeldin I.M. Jang G. Lee B.-C. Effect of 7,8-Dihydroxyflavone as an Antioxidant on In Vitro Maturation of Oocytes and Development of Parthenogenetic Embryos in Pigs J. Reprod. Dev. 2013 59 450 456 10.1262/jrd.2012-134 23748647 

  62. 62. Kang J.-T. Moon J.H. Choi J.-Y. Park S.J. Kim S.J. Saadeldin I.M. Lee B.C. Effect of Antioxidant Flavonoids (Quercetin and Taxifolin) on In Vitro Maturation of Porcine Oocytes Asian-Australas. J. Anim. Sci. 2016 29 352 358 10.5713/ajas.15.0341 26950865 

  63. 63. Guerin P. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings Hum. Reprod. Update 2001 7 175 189 10.1093/humupd/7.2.175 11284661 

  64. 64. Somfai T. Kaneda M. Akagi S. Watanabe S. Haraguchi S. Mizutani E. Dang-Nguyen T.Q. Geshi M. Kikuchi K. Nagai T. Enhancement of lipid metabolism with L-carnitine during in vitro maturation improves nuclear maturation and cleavage ability of follicular porcine oocytes Reprod. Fertil. Dev. 2011 23 912 920 10.1071/RD10339 21871210 

  65. 65. Rajapaksha D.C. Edirisinghe S.L. Nikapitiya C. Dananjaya S. Kwun H.J. Kim C.H. Oh C. Kang D.H. De Zoysa M. Spirulina maxima Derived Pectin Nanoparticles Enhance the Immunomodulation, Stress Tolerance, and Wound Healing in Zebrafish Mar. Drugs 2020 18 556 10.3390/md18110556 33171870 

  66. 66. Devine P.J. Perreault S.D. Luderer U. Roles of Reactive Oxygen Species and Antioxidants in Ovarian Toxicity1 Biol. Reprod. 2012 86 1 10 10.1095/biolreprod.111.095224 

  67. 67. Circu M.L. Yee Aw T. Glutathione and apoptosis Free Radic. Res. 2009 42 689 706 10.1080/10715760802317663 

  68. 68. Kim S.J. Koo O.J. Park H.J. Moon J.H. da Torre B.R. Javaregowda P.K. Kang J.T. Park S.J. Saadeldin I.M. Choi J.Y. Oct4 overexpression facilitates proliferation of porcine fibroblasts and development of cloned embryos Zygote 2014 23 704 711 10.1017/S0967199414000355 25181424 

  69. 69. Sato Y. Kobayashi H. Higuchi T. Shimada Y. Era T. Kimura S. Eto Y. Ida H. Ohashi T. Disease modeling and lentiviral gene transfer in patient-specific induced pluripotent stem cells from late-onset Pompe disease patient Mol. Ther. Methods Clin. Dev. 2015 2 15023 10.1038/mtm.2015.23 26199952 

  70. 70. Eckersley-Maslin M.A. Keeping your options open: Insights from Dppa2/4 into how epigenetic priming factors promote cell plasticity Biochem. Soc. Trans. 2020 48 2891 2902 10.1042/BST20200873 33336687 

  71. 71. Lim P.S.L. Meshorer E. Dppa2 and Dppa4 safeguard bivalent chromatin in order to establish a pluripotent epigenome Nat. Struct. Mol. Biol. 2020 27 685 686 10.1038/s41594-020-0453-1 32572253 

  72. 72. Hellweg C.E. Shinde V. Srinivasan S.P. Henry M. Rotshteyn T. Baumstark-Khan C. Schmitz C. Feles S. Spitta L.F. Hemmersbach R. Radiation Response of Murine Embryonic Stem Cells Cells 2020 9 650 10.3390/cells9071650 32660081 

  73. 73. Bortvin A. Eggan K. Skaletsky H. Akutsu H. Berry D.L. Yanagimachi R. Page D.C. Jaenisch R. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei Development 2003 130 1673 1680 10.1242/dev.00366 12620990 

  74. 74. You J. Lee J. Kim J. Park J. Lee E. Post-fusion treatment with MG132 increases transcription factor expression in somatic cell nuclear transfer embryos in pigs Mol. Reprod. Dev. 2010 77 149 157 10.1002/mrd.21115 19813265 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로