$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Exploring Chemical Reaction Space with Reaction Difference Fingerprints and Parametric t-SNE 원문보기

ACS omega, v.6 no.45, 2021년, pp.30743 - 30751  

Andronov, Mikhail (Faculty of Fundamental Physical and Chemical Engineering , Lomonosov Moscow State University , Leninskie gory, 1 , Moscow 119991 , Russian Federation) ,  Fedorov, Maxim V. (Sirius University of Science and Technology , Olimpiysky Ave. b.1 , Sochi 354000 , Russian Federation) ,  Sosnin, Sergey

Abstract AI-Helper 아이콘AI-Helper

Humans prefer visual representations for the analysis of large databases. In this work, we suggest a method for the visualization of the chemical reaction space. Our technique uses the t-SNE approach that is parameterized using a deep neural network (parametric t-SNE). We demonstrated that the param...

참고문헌 (40)

  1. Dobson C. M. Chemical space and biology . Nature 2004 , 432 , 824 – 828 . 10.1038/nature03192 . 15602547 

  2. Li J. J. Name Reactions: A Collection of Detailed Reaction Mechanisms ; 3 rd ed.; Springer-Verlag Berlin Heidelberg , 2006 . 

  3. Miyaura N. ; Suzuki A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds . Chem. Rev. 1995 , 95 , 2457 – 2483 . 10.1021/cr00039a007 . 

  4. CASREACT website . https://www.cas.org/support/documentation/reactions (accessed January 11, 2020). 

  5. Klepp J. ; Dillon W. ; Lin Y. Preparation of (-)-Levoglucosenone from Cellulose Using Sulfuric Acid in Polyethylene Glycol . Org. Synth. 2020 , 97 , 38 – 53 . 10.15227/orgsyn.097.0038 . 

  6. Braun M. ; Meletis P. ; Fidan M. (S)-(-)-2-allylcyclohexanone . Org. Synth. 2009 , 86 , 47 – 58 . 10.1002/0471264229.os086.06 . 

  7. Fier P. ; Maloney K. M. Deaminative Functionalization of Primary Sulfonamides . Org. Synth. 2020 , 97 , 12 – 20 . 10.15227/orgsyn.097.0012 . 

  8. Brown D. G. ; Boström J. Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? . J. Med. Chem. 2016 , 59 , 4443 – 4458 . 10.1021/acs.jmedchem.5b01409 . 26571338 

  9. Osolodkin D. I. ; Radchenko E. V. ; Orlov A. A. ; Voronkov A. E. ; Palyulin V. A. ; Zefirov N. S. Progress in visual representations of chemical space . Expet Opin. Drug Discov. 2015 , 10 , 959 – 973 . 10.1517/17460441.2015.1060216 . 

  10. Pearson K. LIII. On lines and planes of closest fit to systems of points in space . London, Edinburgh Dublin Philos. Mag. J. Sci. 1901 , 2 , 559 – 572 . 10.1080/14786440109462720 . 

  11. Hotelling H. Relations between two sets of variates . Biometrika 1936 , 28 , 321 – 337 . 10.2307/2333955 . 

  12. Borg I. ; Groenen P. J. F. Modern Multidimensional Scaling. Theory and Applications ; 2 nd ed.; Springer-Verlag : New York , 2005 . 

  13. Cunningham J. P. ; Ghahramani Z. Linear Dimensionality Reduction: Survey, Insights, and Generalizations . J. Mach. Learn. Res. 2015 , 16 , 2859 – 2900 . 

  14. van der Maaten L. ; Hinton G. Visualizing Data using t-SNE . J. Mach. Learn. Res. 2008 , 9 , 2579 – 2605 . 

  15. Kohonen T. Self-organized formation of topologically correct feature maps . Biol. Cybern. 1982 , 43 , 59 – 69 . 10.1007/bf00337288 . 

  16. Bishop C. M. ; Svensén M. ; Williams C. K. I. GTM: The Generative Topographic Mapping . Neural Comput. 1998 , 10 , 215 – 234 . 10.1162/089976698300017953 . 

  17. Gaspar H. A. ; Baskin I. I. ; Varnek A. Frontiers in Molecular Design and Chemical Information Science . Herman Skolnik Award Symposium ; Jürgen Bajorath , 2015 ; Chapter 12, pp 243 – 267 . 

  18. Chen L. ; Gasteiger J. Knowledge Discovery in Reaction Databases: Landscaping Organic Reactions by a Self-Organizing Neural Network . J. Am. Chem. Soc. 1997 , 119 , 4033 – 4042 . 10.1021/ja960027b . 

  19. Horvath D. ; Marcou G. ; Varnek A. Generative topographic mapping in drug design . Drug Discov. Today Technol. 2019 , 32–33 , 99 – 107 . 10.1016/j.ddtec.2020.06.003 . 

  20. Bort W. ; Baskin I. I. ; Sidorov P. ; Marcou G. ; Horvath D. ; Madzhidov T. ; Varnek A. ; Gimadiev T. ; Nugmanov R. ; Mukanov A. Discovery of Novel Chemical Reactions by Deep Generative Recurrent Neural Network . Sci. Rep. 2020 , 11 , 3178 . 

  21. Karlov D. S. ; Sosnin S. ; Tetko I. V. ; Fedorov M. V. Chemical space exploration guided by deep neural networks . RSC Adv. 2019 , 9 , 5151 – 5157 . 10.1039/c8ra10182e . 

  22. Probst D. ; Reymond J.-L. Visualization of very large high-dimensional data sets as minimum spanning trees . J. Cheminf. 2020 , 12 , 12 10.1186/s13321-020-0416-x . 

  23. Schwaller P. ; Probst D. ; Vaucher A. C. ; Nair V. H. ; Kreutter D. ; Laino T. ; Reymond J.-L. Mapping the space of chemical reactions using attention-based neural networks . Nat. Mach. Intell. 2021 , 3 , 144 – 152 . 10.1038/s42256-020-00284-w . 

  24. Darunavir page at drugbank.com. https://go.drugbank.com/drugs/DB01264 , (accessed December 30, 2020). 

  25. Montelucast page at drugbank.com. https://go.drugbank.com/drugs/DB00471 (accessed December 30, 2020). 

  26. Reaxys database . https://www.reaxys.com (accessed January 11, 2020). 

  27. Golbraikh A. ; Tropsha A. Beware of q2! . J. Mol. Graph. Model. 2002 , 20 , 269 – 276 . 10.1016/s1093-3263(01)00123-1 . 11858635 

  28. Lowe D. M. . Extraction of chemical structures and reactions from the literature . Ph.D. Dissertation; University of Cambridge : Cambridge, U.K. , 2012 . 

  29. Chemical reactions from US patents . (1976-Sep2016) dataset. https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873 (accessed October 29, 2020). 

  30. Schwaller P. ; Gaudin T. ; Lányi D. ; Bekas C. ; Laino T. “Found in Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models . Chem. Sci. 2018 , 9 , 6091 – 6098 . 10.1039/c8sc02339e . 30090297 

  31. Schneider N. ; Stiefl N. ; Landrum G. A. What’s What: The (Nearly) Definitive Guide to Reaction Role Assignment . J. Chem. Inf. Model. 2016 , 56 , 2336 – 2346 . 10.1021/acs.jcim.6b00564 . 28024398 

  32. NameRxn . Expert System for Named Reaction Identification and Classification . https://www.nextmovesoftware.com/namerxn.html (accessed 11 January 2020). 

  33. Barnes J. ; Hut P. A hierarchical O(N log N) force-calculation algorithm . Nature 1986 , 324 , 446 – 449 . 10.1038/324446a0 . 

  34. van der Maaten L. Learning a Parametric Embedding by Preserving Local Structure . 2009 , pp 384 – 391 . 

  35. Lee J. A. ; Peluffo-Ordóñez D. H. ; Verleysen M. Multi-scale similarities in stochastic neighbour embedding: Reducing dimensionality while preserving both local and global structure . Neurocomputing 2015 , 169 , 246 – 261 . 10.1016/j.neucom.2014.12.095 . 

  36. Rogers D. ; Hahn M. Extended-Connectivity Fingerprints . J. Chem. Inf. Model. 2010 , 50 , 742 – 754 . 10.1021/ci100050t . 20426451 

  37. Carhart R. E. ; Smith D. H. ; Venkataraghavan R. Atom pairs as molecular features in structure-activity studies: definition and applications . J. Chem. Inf. Comput. Sci. 1985 , 25 , 64 – 73 . 10.1021/ci00046a002 . 

  38. Nilakantan R. ; Bauman N. ; Dixon J. S. ; Venkataraghavan R. Topological torsion: a new molecular descriptor for SAR applications. Comparison with other descriptors . J. Chem. Inf. Comput. Sci. 1987 , 27 , 82 – 85 . 10.1021/ci00054a008 . 

  39. Ke G. ; Meng Q. ; Finley T. ; Wang T. ; Chen W. ; Ma W. ; Ye Q. ; Liu T.-Y. Lightgbm: A highly efficient gradient boosting decision tree . Adv. Neural Inf. Process. Syst. 2017 , 30 , 3146 – 3154 . 

  40. Zacharov I. ; Arslanov R. ; Gunin M. ; Stefonishin D. ; Bykov A. ; Pavlov S. ; Panarin O. ; Maliutin A. ; Rykovanov S. ; Fedorov M. “Zhores”—Petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology . Open Eng. 2019 , 9 , 512 – 520 . 10.1515/eng-2019-0059 . 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로