$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Detecting photoelectrons from spontaneously formed excitons

Nature physics, v.17 no.9, 2021년, pp.1024 - 1030  

Fukutani, Keisuke ,  Stania, Roland ,  Il Kwon, Chang ,  Kim, Jun Sung ,  Kong, Ki Jeong ,  Kim, Jaeyoung ,  Yeom, Han Woong

초록이 없습니다.

참고문헌 (56)

  1. Science H Lee 316 1462 2007 10.1126/science.1142188 Lee, H., Cheng, Y.-C. & Fleming, G. R. Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316, 1462-1465 (2007). 

  2. npj 2D Mater. Appl. M Mueller 2 29 2018 10.1038/s41699-018-0074-2 Mueller, M. & Malic, T. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2, 29 (2018). 

  3. Nano Lett. D Kufer 15 7307 2015 10.1021/acs.nanolett.5b02559 Kufer, D. & Konstantatos, G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 15, 7307-7313 (2015). 

  4. Nat. Nanotechnol. C-H Lee 9 676 2014 10.1038/nnano.2014.150 Lee, C.-H. et al. Atomically thin p-n junctions with van der Waals hetero-interfaces. Nat. Nanotechnol. 9, 676-681 (2014). 

  5. Nano Lett. MM Furchi 14 4785 2014 10.1021/nl501962c Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785-4791 (2014). 

  6. Nat. Nanotechnol. JS Ross 9 268 2014 10.1038/nnano.2014.26 Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 9, 268-272 (2014). 

  7. Nat. Photon. Y Ye 9 733 2015 10.1038/nphoton.2015.197 Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733-737 (2015). 

  8. Phys. Rev. Lett. LV Butov 73 304 1994 10.1103/PhysRevLett.73.304 Butov, L. V. et al. Condensation of indirect excitons in coupled AlAs/GaAs quantum wells. Phys. Rev. Lett. 73, 304-307 (1994). 

  9. Nat. Phys. X Liu 13 746 2017 10.1038/nphys4116 Liu, X. et al. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746-750 (2017). 

  10. Nature Z Wang 574 76 2019 10.1038/s41586-019-1591-7 Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76-80 (2019). 

  11. Science A Kogar 358 1314 2017 10.1126/science.aam6432 Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314-1317 (2017). 

  12. ACS Nano K Sugawara 10 1341 2016 10.1021/acsnano.5b06727 Sugawara, K. et al. Unconventional charge-density-wave transition in monolayer 1T-TiSe2. ACS Nano 10, 1341-1345 (2016). 

  13. Phys. Rev. Lett. Y Wakisaka 103 026402 2009 10.1103/PhysRevLett.103.026402 Wakisaka, Y. et al. Excitonic insulator state in Ta2NiSe5 probed by photoemission spectroscopy. Phys. Rev. Lett. 103, 026402 (2009). 

  14. J. Supercond. Nov. Magn. Y Wakisaka 25 1231 2012 10.1007/s10948-012-1526-0 Wakisaka, Y. et al. Photoemission spectroscopy of Ta2NiSe5. J. Supercond. Nov. Magn. 25, 1231-1234 (2012). 

  15. Phys. Rev. B K Seki 90 155116 2014 10.1103/PhysRevB.90.155116 Seki, K. et al. Excitonic Bose-Einstein condensation in Ta2NiSe5 above room temperature. Phys. Rev. B 90, 155116 (2014). 

  16. Phys. Rev. B J Lee 99 075408 2019 10.1103/PhysRevB.99.075408 Lee, J. et al. Strong interband interaction in the excitonic insulator phase of Ta2NiSe5. Phys. Rev. B 99, 075408 (2019). 

  17. Nat. Commun. YF Lu 8 2017 10.1038/ncomms14408 Lu, Y. F. et al. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nat. Commun. 8, 14408 (2017). 

  18. Phys. Rev. Lett. K Fukutani 123 206401 2019 10.1103/PhysRevLett.123.206401 Fukutani, K. et al. Electrical tuning of the excitonic insulator ground state of Ta2NiSe5. Phys. Rev. Lett. 123, 206401 (2019). 

  19. Nat. Commun. K Okazaki 9 2018 10.1038/s41467-018-06801-1 Okazaki, K. et al. Photo-induced semimetallic states realized in electron-hole coupled insulators. Nat. Commun. 9, 4322 (2018). 

  20. Phys. Rev. Res. MJ Kim 2 042039 2020 10.1103/PhysRevResearch.2.042039 Kim, M. J. et al. Observation of the soft mode behaviors across the structural phase transition in the excitonic insulator Ta2NiSe5. Phys. Rev. Res. 2, 042039 (2020). 

  21. Nat. Commun. P Andrich 12 1699 2021 10.1038/s41467-021-21929-3 Andrich, P. et al. Ultrafast melting and recovery of collective order in the excitonic insulator Ta2NiSe5. Nat. Commun. 12, 1699 (2021). 

  22. Nat. Commun. K Kim 12 1969 2021 10.1038/s41467-021-22133-z Kim, K. et al. Direct observation of excitonic instability in Ta2NiSe5. Nat. Commun. 12, 1969 (2021). 

  23. Phys. Rev. D Jerome 158 462 1967 10.1103/PhysRev.158.462 Jerome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462-475 (1967). 

  24. Phys. Rev. B TI Larkin 95 195144 2017 10.1103/PhysRevB.95.195144 Larkin, T. I. et al. Giant exciton Fano resonance in quasi-one-dimensional Ta2NiSe5. Phys. Rev. B 95, 195144 (2017). 

  25. Phys. Rev. B B Zenker 90 195118 2014 10.1103/PhysRevB.90.195118 Zenker, B., Fehske, H. & Beck, H. The fate of the excitonic insulator in the presence of phonons. Phys. Rev. B 90, 195118 (2014). 

  26. Phys. Rev. B A Rustagi 97 235310 2018 10.1103/PhysRevB.97.235310 Rustagi, A. & Kemper, A. F. Photoemission signature of excitons. Phys. Rev. B 97, 235310 (2018). 

  27. Phys. Rev. Lett. K Sugimoto 120 247602 2018 10.1103/PhysRevLett.120.247602 Sugimoto, K., Nishimoto, S., Kaneko, T. & Ohta, Y. Strong coupling nature of the excitonic insulator state in Ta2NiSe5. Phys. Rev. Lett. 120, 247602 (2018). 

  28. Phys. Rev. B FX Bronold 74 165107 2006 10.1103/PhysRevB.74.165107 Bronold, F. X. & Fehske, H. Possibility of an excitonic insulator at the semiconductor-semimetal transition. Phys. Rev. B 74, 165107 (2006). 

  29. Phys. Rev. B B Zenker 85 121102(R) 2012 10.1103/PhysRevB.85.121102 Zenker, B., Ihle, D., Bronold, F. X. & Fehske, H. Electron-hole pair condensation at the semimetal-semiconductor transition: a BCS-BEC crossover scenario. Phys. Rev. B 85, 121102(R) (2012). 

  30. Phys. Rev. B K Seki 84 245106 2011 10.1103/PhysRevB.84.245106 Seki, K., Eder, R. & Ohta, Y. BCS-BEC crossover in the extended Falikov-Kimball model: variational cluster approach. Phys. Rev. B 84, 245106 (2011). 

  31. ACS Nano SY Kim 10 8888 2016 10.1021/acsnano.6b04796 Kim, S. Y. et al. Layer-confined excitonic insulating phase in ultrathin Ta2NiSe5 crystals. ACS Nano 10, 8888-8894 (2016). 

  32. Phys. Rev. B TI Larkin 98 123113 2018 10.1103/PhysRevB.98.125113 Larkin, T. I. et al. Infrared phonon spectra of quasi-one-dimensional Ta2NiSe5. Phys. Rev. B 98, 123113 (2018). 

  33. Phys. Rev. B T Kaneko 87 035121 2013 10.1103/PhysRevB.87.035121 Kaneko, T., Toriyama, T., Konishi, T. & Ohta, Y. Orthorhombic-to-monoclinic phase transition of Ta2NiSe5 induced by the Bose-Einstein condensation of excitons. Phys. Rev. B 87, 035121 (2013). 

  34. Phys. Rev. Lett. G Mazza 124 197601 2020 10.1103/PhysRevLett.124.197601 Mazza, G. et al. Nature of symmetry breaking at the excitonic insulator transition: Ta2NiSe5. Phys. Rev. Lett. 124, 197601 (2020). 

  35. Baldini, E. et al. The spontaneous symmetry breaking in Ta2NiSe5 is structural in nature. Preprint at https://arxiv.org/pdf/2007.02909.pdf (2020). 

  36. Solid State Commun. J Harmanson 22 9 1977 10.1016/0038-1098(77)90931-0 Harmanson, J. Final-state symmetry and polarization effects in angle-resolved photoemission spectroscopy. Solid State Commun. 22, 9-11 (1977). 

  37. Rev. Mod. Phys. A Damascelli 75 473 2003 10.1103/RevModPhys.75.473 Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473-541 (2003). 

  38. Phys. Rev. Res. MD Watson 2 013236 2020 10.1103/PhysRevResearch.2.013236 Watson, M. D. et al. Band hybridization at the semimetal-semiconductor transition of Ta2NiSe5 enabled by mirror-symmetry breaking. Phys. Rev. Res. 2, 013236 (2020). 

  39. Phys. Rev. Lett. R Ang 109 176403 2012 10.1103/PhysRevLett.109.176403 Ang, R. et al. Real-space coexistence of the melted Mott state and superconductivity in Fe-substituted 1T-TaS2. Phys. Rev. Lett. 109, 176403 (2012). 

  40. Phys. Rev. B H Tanimura 100 115204 2019 10.1103/PhysRevB.100.115204 Tanimura, H., Tanimura, K. & van Loosdrecht, P. H. M. Dynamics of incoherent exciton formation in Cu2O: time- and angle-resolved photoemission spectroscopy. Phys. Rev. B 100, 115204 (2019). 

  41. Nat. Phys. X Cui 10 505 2014 10.1038/nphys2981 Cui, X. et al. Transient excitons at metal surfaces. Nat. Phys. 10, 505-509 (2014). 

  42. Phys. Rev. B D Christiansen 100 205401 2019 10.1103/PhysRevB.100.205401 Christiansen, D., Selig, M., Malic, E., Ernstorfer & Knorr, A. Theory of exciton dynamics in time-resolved ARPES: intra- and intervalley scattering in two-dimensional semiconductors. Phys. Rev. B 100, 205401 (2019). 

  43. 10.1007/978-3-642-82602-3 Ueta, M., Kanzaki, H., Kobayashi, K., Toyozawa, Y. & Hanamura, E. Excitonic Processes in Solids (Springer, 1986). 

  44. Phys. Rev. Mater. A Subedi 4 083601 2020 10.1103/PhysRevMaterials.4.083601 Subedi, A. Orthorhombic-to-monoclinic transition in Ta2NiSe5 due to a zone-center optical phonon instability. Phys. Rev. Mater. 4, 083601 (2020). 

  45. Phys. Rev. B A Nakano 98 045139 2018 10.1103/PhysRevB.98.045139 Nakano, A. et al. Antiferroelectric distortion with anomalous phonon softening in the excitonic insulator Ta2NiSe5. Phys. Rev. B 98, 045139 (2018). 

  46. Phys. Rev. B C Monney 79 045116 2009 10.1103/PhysRevB.79.045116 Monney, C. et al. Spontaneous exciton condensation in 1T-TiSe2: BCS-like approach. Phys. Rev. B 79, 045116 (2009). 

  47. Phys. Rev. B C Monney 85 235150 2012 10.1103/PhysRevB.85.235150 Monney, C., Monney, G., Aebi, P. & Beck, H. Electron-hole fluctuation phase in 1T-TiSe2. Phys. Rev. B 85, 235150 (2012). 

  48. J. Mater. Chem. C K Mu 6 3976-3981 2018 Mu, K. et al. Electronic structures of layered Ta2NiS5 single crystals revealed by high-resolution angle-resolved photoemission spectroscopy. J. Mater. Chem. C 6, 3976-3981 (2018). 

  49. Nature LV Butov 418 751 2002 10.1038/nature00943 Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751-754 (2002). 

  50. Nat. Phys. F Dubin 2 32 2006 10.1038/nphys196 Dubin, F. et al. Macroscopic coherence of a single exciton state in an organic quantum wire. Nat. Phys. 2, 32-35 (2006). 

  51. Sci. Adv. D Werdehausen 4 eaap8652 2018 10.1126/sciadv.aap8652 Werdehausen, D. et al. Coherent order parameter oscillations in the ground state of the excitonic insulator Ta2NiSe5. Sci. Adv. 4, eaap8652 (2018). 

  52. Andrich, P. et al. Imaging the coherent propagation of collective modes in the excitonic insulator candidate Ta2NiSe5 at room temperature. Preprint at https://arxiv.org/pdf/2003.10799.pdf (2020). 

  53. Phys. Rev. B G Kresse 47 558-561 1993 10.1103/PhysRevB.47.558 Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558-561 (1993). 

  54. Phys. Rev. B G Kresse 54 11169 1996 10.1103/PhysRevB.54.11169 Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169-11186 (1996). 

  55. Phys. Rev. Lett. JP Perdew 100 136406 2008 10.1103/PhysRevLett.100.136406 Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008). 

  56. Phys. Rev. B SL Dudarev 57 1505 1998 10.1103/PhysRevB.57.1505 Dudarev, S. L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505-1509 (1998). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로