$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Smart TPE Materials Based on Recycled Rubber Shred 원문보기

Materials, v.14 no.21, 2021년, pp.6237 -   

Toczek, Klaudia ,  Lipińska, Magdalena ,  Pietrasik, Joanna

Abstract AI-Helper 아이콘AI-Helper

Thermo-responsive shape memory materials were developed based on recycled ethylene-propylene-diene (EPDM) rubber shred and thermoplastic elastomers (TPE). Ethylene-1-octene TPEs (Engage 8180, 8411, 8452) with varying degrees of crystallinity and Mooney viscosity were used to prepare the composite ma...

주제어

참고문헌 (43)

  1. 1. Odpady z tworzyw sztucznych i recykling w UE: Fakty i liczby Available online: https://www.europarl.europa.eu/news/pl/headlines/society/20181212STO21610/odpady-z-tworzyw-sztucznych-i-recykling-w-ue-fakty-i-liczby (accessed on 24 September 2021) 

  2. 2. Yehia A.A. Recycling of Rubber Waste Polym. Technol. Eng. 2004 43 1735 1754 10.1081/PPT-200040086 

  3. 3. Seghar S. Asaro L. Rolland-Monnet M. Hocine N.A. Thermo-mechanical devulcanization and recycling of rubber industry waste Resour. Conserv. Recycl. 2019 144 180 186 10.1016/j.resconrec.2019.01.047 

  4. 4. Wang J. Xue L. Zhao B. Lin G. Jin X. Liu D. Zhu H. Yang J. Shang K. Flame Retardancy, Fire Behavior, and Flame Retardant Mechanism of Intumescent Flame Retardant EPDM Containing Ammonium Polyphosphate/Pentaerythrotol and Expandable Graphite Materials 2019 12 4035 10.3390/ma12244035 

  5. 5. Movahed S.O. Ansarifar A. Zohuri G.H. Ghaneie N. Kermany Y. Devulcanization of ethylene–propylene–diene waste rubber by microwaves and chemical agents J. Elastomers Plast. 2014 48 122 144 10.1177/0095244314557975 

  6. 6. Mohaved S.O. Ansarifar A. Nezhad S.K. Atharyfar S. A novel industrial technique for recycling ethylene-propylene-diene waste rubber Polym. Degrad. Stab. 2015 111 114 123 10.1016/j.polymdegradstab.2014.11.003 

  7. 7. Colom X. Cañavate J. Formela K. Shadman A. Saeb M.R. Assessment of the devulcanization process of EPDM waste from roofing systems by combined thermomechanical/microwave procedures Polym. Degrad. Stab. 2021 183 109450 10.1016/j.polymdegradstab.2020.109450 

  8. 8. Maris J. Bourdon S. Brossard J.-M. Cauret L. Fontaine L. Montembault V. Mechanical recycling: Compatibilization of mixed thermoplastic wastes Polym. Degrad. Stab. 2018 147 245 266 10.1016/j.polymdegradstab.2017.11.001 

  9. 9. Nabil H. Ismail H. Azura A. Compounding, mechanical and morphological properties of carbon-black-filled natural rubber/recycled ethylene-propylene-diene-monomer (NR/R-EPDM) blends Polym. Test. 2013 32 385 393 10.1016/j.polymertesting.2012.11.003 

  10. 10. Nabil H. Ismail H. Azura A. Effects of virgin Ethylene–Propylene–Diene–Monomer and its preheating time on the properties of natural rubber/recycled Ethylene–Propylene–Diene–Monomer blends Mater. Des. 2013 50 27 37 10.1016/j.matdes.2013.02.086 

  11. 11. Nabil H. Ismail H. Enhancing the thermal stability of natural rubber/recycled ethylene–propylene–diene rubber blends by means of introducing pre-vulcanised ethylene–propylene–diene rubber and electron beam irradiation Mater. Des. 2014 56 1057 1067 10.1016/j.matdes.2013.12.020 

  12. 12. Hayeemasae N. Ismail H. Improving the Tensile Properties of Natural Rubber Compounds Containing Ground Ethylene Propylene Diene Rubber Waste by Two-stage Processing Procedia Chem. 2016 19 810 815 10.1016/j.proche.2016.03.106 

  13. 13. Meng H. Li G. A review of stimuli-responsive shape memory polymer composites Polymer 2013 54 2199 2221 10.1016/j.polymer.2013.02.023 

  14. 14. Panahi-Sarmad M. Abrisham M. Noroozi M. Amirkiai A. Dehghan P. Goodarzi V. Zahiri B. Deep focusing on the role of microstructures in shape memory properties of polymer composites: A critical review Eur. Polym. J. 2019 117 280 303 10.1016/j.eurpolymj.2019.05.013 

  15. 15. Meng Q. Hu J. A review of shape memory polymer composites and blends Compos. Part A Appl. Sci. Manuf. 2009 40 1661 1672 10.1016/j.compositesa.2009.08.011 

  16. 16. Verma D.K. Purohit R. Rana R. Purohit S. Patel K. Enhancement of the properties of shape memory polymers using different nano size reinforcement—A review Mater. Today Proc. 2020 26 3037 3042 10.1016/j.matpr.2020.02.631 

  17. 17. Yan C. Yang Q. Li G. A phenomenological constitutive model for semicrystalline two-way shape memory polymers Int. J. Mech. Sci. 2020 177 105552 10.1016/j.ijmecsci.2020.105552 

  18. 18. Hoeher R. Raidt T. Rose M. Katzenberg F. Tiller J.C. Recoverable strain storage capacity of shape memory polyethylene J. Polym. Sci. Part B: Polym. Phys. 2013 51 1033 1040 10.1002/polb.23301 

  19. 19. Kolesov I.S. Multiple shape-memory behavior and thermal-mechanical properties of peroxide cross-linked blends of linear and short-chain branched polyethylenes Express Polym. Lett. 2008 2 461 473 10.3144/expresspolymlett.2008.56 

  20. 20. Ratna D. Karger-Kocsis J. Recent advances in shape memory polymers and composites: A review J. Mater. Sci. 2008 43 254 269 10.1007/s10853-007-2176-7 

  21. 21. Meng Q. Hu J. Zhu Y. Lu J. Liu Y. Morphology, phase separation, thermal and mechanical property differences of shape memory fibres prepared by different spinning methods Smart Mater. Struct. 2007 16 1192 1197 10.1088/0964-1726/16/4/030 

  22. 22. Razzaq M.Y. Anhalt M. Frormann L. Weidenfeller B. Mechanical spectroscopy of magnetite filled polyurethane shape memory polymers Mater. Sci. Eng. A 2007 471 57 62 10.1016/j.msea.2007.03.059 

  23. 23. Leng J. Lu H. Liu Y. Du S. Conductive nanoparticles in electro activated shape memory polymer sensor and actuator Proceedings of the The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring San Diego, CA, USA 9–13 March 2008 Volume 6931 693109 10.1117/12.775743 

  24. 24. Lan X. Huang W.M. Liu N. Phee S. Leng J.S. Du S.Y. Improving the electrical conductivity by forming Ni powder chains in a shape-memory polymer filled with carbon black Electroact. Polym. Actuators Devices (EAPAD) 2008 6927 692717 10.1117/12.776546 

  25. 25. Mondal S. Hu J. Yong Z. Free volume and water vapor permeability of dense segmented polyurethane membrane J. Membr. Sci. 2006 280 427 432 10.1016/j.memsci.2006.01.047 

  26. 26. Hu J. Zhu Y. Huang H. Lu J. Recent advances in shape—Memory polymers: Structure, mechanism, functionality, modeling and applications Prog. Polym. Sci. 2012 37 1720 1763 10.1016/j.progpolymsci.2012.06.001 

  27. 27. Xie T. Recent advances in polymer shape memory Polymer 2011 52 4985 5000 10.1016/j.polymer.2011.08.003 

  28. 28. Xu C. Cui R. Chen Y. Ding J. Shape memory effect of dynamically vulcanized ethylene-propylene-diene rubber/polypropylene blends realized by in-situ compatibilization of sodium methacrylate Compos. Part B Eng. 2019 179 107532 10.1016/j.compositesb.2019.107532 

  29. 29. Kolesov I. Dolynchuk O. Radusch H.J. Shape-memory behavior of cross-linked semi-crystalline polymers and their blends eXPRESS Polym. Lett. 2015 9 255 276 10.3144/expresspolymlett.2015.24 

  30. 30. Chatterjee T. Dey P. Nando G.B. Naskar K. Thermo-responsive shape memory polymer blends based on alpha olefin and ethylene propylene diene rubber Polymer 2015 78 180 192 10.1016/j.polymer.2015.10.007 

  31. 31. Yang Q. Zheng W. Zhao W. Peng C. Ren J. Yu Q. Hu Y. Zhang X. One-way and two-way shape memory effects of a high-strain cis-1,4-polybutadiene–polyethylene copolymer based dynamic network via self-complementary quadruple hydrogen bonding Polym. Chem. 2019 10 718 726 10.1039/C8PY01614C 

  32. 32. Biswas A. Aswal V.K. Maiti P. Tunable shape memory behavior of polymer with surface modification of nanoparticles J. Colloid Interface Sci. 2019 556 147 158 10.1016/j.jcis.2019.08.053 31445444 

  33. 33. Jagtap S. Dalvi V. Sankar K. Ratna D. Shape memory properties and unusual optical behaviour of an interpenetrating network of poly(ethylene oxide) and poly(2-hydroxyethyl methacrylate) Polym. Int. 2019 68 812 817 10.1002/pi.5776 

  34. 34. Yao Y. Luo Y. Xu Y. Wang B. Li J. Deng H. Lu H. Fabrication and characterization of auxetic shape memory composite foams Compos. Part B Eng. 2018 152 1 7 10.1016/j.compositesb.2018.06.027 

  35. 35. Wu W. Xu C. Zheng Z. Lin B. Fu L. Strengthened, recyclable shape memory rubber films with a rigid filler nano-capillary network J. Mater. Chem. A 2019 7 6901 6910 10.1039/C9TA01266D 

  36. 36. Radusch H.-J. Kolesov I. Gohs U. Heinrich G. Multiple Shape-Memory Behavior of Polyethylene/Polycyclooctene Blends Cross-Linked by Electron Irradiation Macromol. Mater. Eng. 2012 297 1225 1234 10.1002/mame.201200204 

  37. 37. Maimaitiming A. Zhang M. Tan H. Wang M. Zhang M. Hu J.-T. Xing Z. Wu G.-Z. High-Strength Triple Shape Memory Elastomers from Radiation-Vulcanized Polyolefin Elastomer/Polypropylene Blends ACS Appl. Polym. Mater. 2019 1 1735 1748 10.1021/acsapm.9b00289 

  38. 38. Cui R. Ding J. Chen Y. Magnesium acrylate induced interfacial compatibilization of EPDM/PP thermoplastic vulcanizate and shape memory behavior Compos. Part A Appl. Sci. Manuf. 2019 122 27 35 10.1016/j.compositesa.2019.04.016 

  39. 39. Le H. Schoß M. Ilisch S. Gohs U. Heinrich G. Pham T. Radusch H.-J. CB filled EOC/EPDM blends as a shape-memory material: Manufacturing, morphology and properties Polymer 2011 52 5858 5866 10.1016/j.polymer.2011.09.043 

  40. 40. Kumar A. Commereuc S. Verney V. Ageing of elastomers: A molecular approach based on rheological characterization Polym. Degrad. Stab. 2004 85 751 757 10.1016/j.polymdegradstab.2003.11.014 

  41. 41. Acharya H. Srivastava S. Bhowmick A.K. Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation: Structural characterization and properties Compos. Sci. Technol. 2007 67 2807 2816 10.1016/j.compscitech.2007.01.030 

  42. 42. Lipińska M. Imiela M. Morphology, rheology and curing of (ethylene-propylene elastomer/hydrogenate acrylonitrile-butadiene rubber) blends reinforced by POSS and organoclay Polym. Test. 2019 75 26 37 10.1016/j.polymertesting.2019.01.020 

  43. 43. Kader M.A. Bhowmick A.K. Rheological and viscoelastic properties of multiphase acrylic rubber/fluoroelastomer/polyacrylate blends Polym. Eng. Sci. 2003 43 975 986 10.1002/pen.10081 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로