$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Hydrogen embrittlement mechanisms in advanced high strength steel 원문보기

Acta materialia, v.223, 2022년, pp.117488 -   

Gong, Peng ,  Turk, Andrej ,  Nutter, John ,  Yu, Feng ,  Wynne, Bradley ,  Rivera-Diaz-del-Castillo, Pedro ,  Mark Rainforth, W.

초록이 없습니다.

참고문헌 (80)

  1. Scr. Mater. Takahashi 61 145 2009 10.1016/j.scriptamat.2009.03.020 Hydrogen-induced slip localization around a quasi-brittle fatigue crack observed by high-voltage electron microscopy 

  2. Acta Mater. Wang 69 275 2014 10.1016/j.actamat.2014.01.060 Hydrogen-induced intergranular failure of iron 

  3. Int. J. Fatigue Martin 57 28 2013 10.1016/j.ijfatigue.2012.08.009 A microstructural based understanding of hydrogen-enhanced fatigue of stainless steels 

  4. Acta Mater. Martin 60 2739 2012 10.1016/j.actamat.2012.01.040 Hydrogen-induced intergranular failure in nickel revisited 

  5. Scr.Mater. Takahashi 64 721 2011 10.1016/j.scriptamat.2010.12.032 Effect of hydrogen on dislocation structures around a mixed-mode fatigue crack tip in a single-crystalline iron-silicon alloy 

  6. Acta Mater. Takahashi 58 1972 2010 10.1016/j.actamat.2009.11.040 An intrinsic effect of hydrogen on cyclic slip deformation around a {110} fatigue crack in Fe-3.2 wt.% Si alloy 

  7. Metall. Mater. Trans. A Lovicu 43 4075 2012 10.1007/s11661-012-1280-8 Hydrogen embrittlement of automotive advanced high-strength steels 

  8. Int. J. Hydrogen Energy. Zhu 39 13031 2014 10.1016/j.ijhydene.2014.06.079 Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q & P) treated steel 

  9. Int. J. Hydrogen Energy. Michler 35 821 2009 10.1016/j.ijhydene.2009.10.092 Microstructural aspects upon hydrogen environment embrittlement of various bcc steels 

  10. Metal. Mater. Tran. A Enos 33 1151 2002 10.1007/s11661-002-0217-z A critical-strain criterion for hydrogen embrittlement of cold-drawn 

  11. Wasserstoffversprodung in Metallen Louthan 10 357 1972 Hydrogen embrittlement of metals embrittlement of metals by hydrogen 

  12. Knarbakk 2015 Hydrogen Induced stress Cracking of Inconel 718 Under Cathodic Polarization-Effects of Hydrogen On the Initiation and Propagation of cracks, Doctoral dissertation 

  13. Pohang Unviersity of Science and Technology Hyun 2012 Hydrogen embrittlement in TRIP and TWIP steels, doctoral dissertation 

  14. Corros. Sci. Venezuela 111 602 2016 10.1016/j.corsci.2016.05.040 Influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels in simulated service conditions 

  15. Eng. Fail. Anal. Eliaz 9 167 2002 10.1016/S1350-6307(01)00009-7 Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittlement in high-strength steels 

  16. Acta Mater Neeraj 60 5160 2012 10.1016/j.actamat.2012.06.014 Hydrogen embrittlement of ferritic steels: observations on deformation microstructure, nanoscale dimples and failure by nanovoiding 

  17. J. Nucl. Mater. Wan 455 253 2014 10.1016/j.jnucmat.2014.05.048 The behavior of vacancy-type dislocation loops under electron irradiation in iron 

  18. Metal. Mater. Tran. A Murakami 39A 1327 2008 10.1007/s11661-008-9506-5 Hydrogen Embrittlement mechanism in fatigue of austenitic stainless steels 

  19. Metall. Mater. Trans.: B Beachem 3 441 1972 10.1007/BF02642048 A new model for hydrogen-assisted cracking (hydrogen "embrittlement") 

  20. Mater. Sci. Eng. A Birnbaum 176 1 191 1994 10.1016/0921-5093(94)90975-X Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture 

  21. Rev. Mod. Phys. Meyers 64 559 1992 10.1103/RevModPhys.64.559 Hydrogen interactions with defects in crystalline solids 

  22. E. Sirois, P. Sofronis, H.K. Birnbaum, in: S. M. Bruemmer et al. (eds.), Fundamental Aspects of Stress Corrosion Cracking, The Minerals, Metals and Materials Society, New York, 1992, pp. 173. 

  23. H.K. Birnbaum, in N. Moody and A. W. Thompson (eds.), Hydrogen Effects on Materials Behaviour; The Minerals, Metals and Materials Society, New York, 1990, pp. 639. 

  24. Acta Mater. Koyama 70 174 2014 10.1016/j.actamat.2014.01.048 Hydrogen-assisted decohesion and localized plasticity in dual-phase steel 

  25. Acta Mater. Tehranchi 185 98 2020 10.1016/j.actamat.2019.11.062 A decohesion pathway for hydrogen embrittlement in nickel: mechanism and quantitative prediction 

  26. Nat. Mater. Song 12 145 2013 10.1038/nmat3479 Atomic mechanism and prediction of hydrogen embrittlement in iron 

  27. Mater. Sci. Eng. A Herms 272 279 1999 10.1016/S0921-5093(99)00319-6 Hydrogen embrittlement of 316 L type stainless steel 

  28. Mater. Sci. Eng. A. Wang 586 142 2013 10.1016/j.msea.2013.07.097 Microstructure effect on hydrogen-induced cracking in TM210 maraging steel 

  29. Mater. Charact. Laureys 112 169 2016 10.1016/j.matchar.2015.12.017 Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD 

  30. Acta Mater. Han 113 1 2016 10.1016/j.actamat.2016.04.038 The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel 

  31. Scri. Metal. Sun 23 1735 1989 10.1016/0036-9748(89)90352-9 The influence of hydrogen on the sub-structure of the martensite and ferrite dual-phase steel 

  32. Hilley 20 1971 Residual Stress Measurement By X-ray Diffraction 

  33. Acta Mater. Gong 161 374 2018 10.1016/j.actamat.2018.09.008 The effect of molybdenum on interphase precipitation and microstructures in microalloyed steels containing titanium and vanadium 

  34. Anal. Chem. Kissinger 29 1702 1957 10.1021/ac60131a045 Reaction kinetics in differential thermal analysis 

  35. Acta Metall. Lee 35 11 2695 1987 10.1016/0001-6160(87)90268-9 The effect of the interface character of TiC particles on hydrogen trapping in steel 

  36. Intl. J. Hydrogen Energy Depover 43 3050 2018 10.1016/j.ijhydene.2017.12.109 The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys: an experimental proof of the HELP mechanism 

  37. Sci. Adv. Gong 6 eabb6152 2020 10.1126/sciadv.abb6152 Hydrogen embrittlement through the formation of low energy dislocation nanostructures in nanoprecipitation-strengthened steels 

  38. J. Alloys Compd. Drexler 789 647 2019 10.1016/j.jallcom.2019.03.102 Model-based interpretation of thermal desorption spectra of Fe-C-Ti alloys 

  39. J. Alloys Compd Drexler 826 2020 10.1016/j.jallcom.2020.154057 Microstructural based hydrogen diffusion and trapping models applied to Fe-C-X alloys 

  40. Corros. Sci. Park 89 38 2014 10.1016/j.corsci.2014.08.005 The effect of Ti precipitates on hydrogen embrittlement of Fe-18Mn-0.6C-2Al-xTi twinning-induced plasticity steel 

  41. J. Alloys Compd. Kim 735 2067 2018 10.1016/j.jallcom.2017.12.004 Effects of titanium content on hydrogen embrittlement susceptibility of hot-stamped boron steels 

  42. Mater. Sci. Eng. T.Depover A669 134 2016 10.1016/j.msea.2016.05.018 Hydrogen trapping and hydrogen induced mechanical degradation in lab cast Fe-C-Cr alloys 

  43. Mater. Sci. Eng. Depover A675 299 2016 10.1016/j.msea.2016.08.053 Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation in Fe-C-V alloys 

  44. Corros. Sci. Pérez Escobar 65 199 2012 10.1016/j.corsci.2012.08.017 Thermal desorption spectroscopy study of the interaction between hydrogen and different microstructural constituents in lab cast Fe-C alloys 

  45. Corros. Sci. T.Depover 112 308 2016 10.1016/j.corsci.2016.07.013 The effect of TiC on the hydrogen induced ductility loss and trappingbehavior of Fe-C-Ti alloys 

  46. Procedia Structural Integrity Depover 13 1414 2018 10.1016/j.prostr.2018.12.294 The hydrogen trapping ability of TiC and V4C3 by thermal desorption spectroscopy and permeation experiments 

  47. Mater. Sci. Eng. A Yoo 791 2020 10.1016/j.msea.2020.139763 Effects of Ti alloying on resistance to hydrogen embrittlement in (Nb+Mo)-alloyed ultra-high-strength hot-stamping steels 

  48. Mater. Sci. Eng. A Drexler 800 14027 2021 10.1016/j.msea.2020.140276 On the local evaluation of the hydrogen susceptibility of cold-formed and heat treated advanced high strength steel (AHSS) sheet 

  49. ISIJ Intl. Okano 59 10 1828 2019 10.2355/isijinternational.ISIJINT-2018-752 Identification of hydrogen trapping sites in a strained ferritic-martensitic dual-phase steel 

  50. Materials (Basel) Kholtobina 13 2288 2020 10.3390/ma13102288 Hydrogen trapping in bcc iron 

  51. Mater. Sci. Technol. Bombac 33 13 1505 2017 10.1080/02670836.2017.1310417 Theoretical evaluation of the role of crystal defects on local equilibrium and effective diffusivity of hydrogen in iron 

  52. Met. Trans. A. Choo 13 135 1982 10.1007/BF02642424 Thermal analysis of trapped hydrogen in pure iron 

  53. Scr. Metall. Bernstein 8 343 1974 10.1016/0036-9748(74)90136-7 The effect of hydrogen on the deformation of iron 

  54. Scr. Mater. Takahashi 67 213 2012 10.1016/j.scriptamat.2012.04.022 Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography 

  55. Intl. J. Hydrogen Energy Echeverri Restrepo 45 2382 2020 10.1016/j.ijhydene.2019.11.102 Density functional theory calculations of iron -vanadium carbide interfaces and the effect of hydrogen 

  56. Metall. Mater. Trans. Wei 35B 587 2004 10.1007/s11663-004-0057-x Precise determination of the activation energy for desorption of hydrogen in two Ti-added steels by a single thermal-desorption spectrum 

  57. ISIJ Intl. Wei 43 539 2003 10.2355/isijinternational.43.539 Hydrogen trapping in quenched and tempered 0.42C-0.30Ti steel containing bimodally dispersed TiC particles 

  58. Metal. Trans Wei 37A 331 2006 10.1007/s11661-006-0004-3 Quantitative analysis of hydrogen trapping of TiC particles in steel 

  59. Acta Metall. Pressouyre 27 89 1979 10.1016/0001-6160(79)90059-2 A kinetic trapping model for hydrogen-induced cracking 

  60. Metals (Basel) Mohrbacher 10 853 2020 10.3390/met10070853 Alloy optimisation for reducing delayed fracture sensitivity of 2000 MPa press hardening steel 

  61. ISIJ Intl. Kawakami 52 1693 2012 10.2355/isijinternational.52.1693 Numerical analysis of hydrogen trap state by TiC and V4C3 in bcc- Fe 

  62. Phy. Rev. B Di Stefano 93 2016 10.1103/PhysRevB.93.184108 First-principles investigation of hydrogen interaction with TiC precipitates in α-Fe 

  63. J. Mater. Res. Itsumi 11 9 2214 1996 10.1557/JMR.1996.0281 Electronic bonding characteristics of hydrogen in bcc iron : part II Grain boundaries 

  64. Proc. Math. Phys. Eng. Sci. Yamasaki 462 2315 2006 M4C3 precipitation in Fe-C-Mo-V steels and relationship to hydrogen trapping 

  65. Science Chen 355 1196 2017 10.1126/science.aal2418 Direct obesrvation of individual hydrogen atoms at trapping sites in a ferritic steel 

  66. Scr. Mater. Takahashi 63 261 2010 10.1016/j.scriptamat.2010.03.012 The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography 

  67. Acta Mater. Deutges 82 266 2015 10.1016/j.actamat.2014.09.013 Hydrogen diffusivities as a measure of relative dislocation densities in palladium and increase of the density by plastic deformation in the presence of dissolved hydrogen 

  68. Scr. Mater. Barnoush 62 242 2010 10.1016/j.scriptamat.2009.11.007 Direct observation of hydrogen-enhanced plasticity in super duplex stainless steel by means of in situ electrochemical methods 

  69. Acta Mater Barnoush 58 5274 2010 10.1016/j.actamat.2010.05.057 Recent developments in the study of hydrogen embrittlement: hydrogen effect on dislocation nucleation 

  70. Sci. Adv. Koyama 6 eaaz1187 2020 10.1126/sciadv.aaz1187 Origin of micrometer-scale dislocation motion during hydrogen desorption 

  71. Sci. Rep. Luo 7 9892 2017 10.1038/s41598-017-10774-4 Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy 

  72. Corros. Rev. Rudomilova 36 413 2018 10.1515/corrrev-2017-0106 Techniques for investigation of hydrogen embrittlement of advanced high strength steels 

  73. Yagodzinskyy 123 97 2008 Proceedings of the 2008 International Hydrogen Conference Effect of hydrogen on plastic strain localization in single crystals of nickel and austenitic stainless steel in effects of hydrogen on materials 

  74. Sci. Rep. Gong 10209 1 2020 The influence of hydrogen on plasticity in pure iron-theory and experiment 

  75. Science Wakita 210 188 1980 10.1126/science.210.4466.188 Hydrogen release: new indicator of fault activity 

  76. Int. J. Hydrog. Energy Dong 34 9879 2009 10.1016/j.ijhydene.2009.09.090 Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking 

  77. Matel. Mater. Tran. A Nagumo 32A 339 2001 10.1007/s11661-001-0265-9 Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels 

  78. Ann. Rev. Mater. Sci. Oriani 8 327 1978 10.1146/annurev.ms.08.080178.001551 Hydrogen embrittlement of steels 

  79. ISIJ Int. Asahi 43 527 2003 10.2355/isijinternational.43.527 Hydrogen trapping behavior in vanadium-added Steel 

  80. Acta Mater. Nagao 60 5182 2012 10.1016/j.actamat.2012.06.040 The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로