$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Harmonizing the Mooring System Reliability of Multiline Anchor Wind Farms

ASCE-ASME journal of risk and uncertainty in engineering systems, Part B. Mechanical engineering, v.7 no.4, 2021년, pp.044501 -   

Hallowell, Spencer T. (Department of Civil & Environmental Engineering, University of Massachusetts Amherst , Amherst, MA 01002) ,  Arwade, Sanjay R. (Department of Civil & Environmental Engineering, University of Massachusetts Amherst , Amherst, MA 01002) ,  Diaz, Brian D. (Department of Civil & Environmental Engineering, Texas A&M University , College Station, TX 77843-3227) ,  Aubeny, Charles P. (Department of Civil & Environmental Engineering, Texas A&M University , College Station, TX 77843-3227) ,  Fontana, Casey M. (Department of Civil & Environmental Engineering, University of Massachusetts Amherst , Amherst, MA 01002) ,  DeGroot, Don J. (Department of Civil & Environmental Engineering, University of Massachusetts Amherst , Amherst, MA 01002) ,  Landon, Melissa E. (Department of Civil & Environmental Engineering, University of Maine , Orono, ME 04469)

Abstract AI-Helper 아이콘AI-Helper

AbstractOne of many barriers to the deployment of floating offshore wind turbines is the high cost of vessel time needed for soil investigations and anchor installation. A multiline anchor system is proposed in which multiple floating offshore wind turbines (FOWTs) are connected to a single caisson....

참고문헌 (29)

  1. Renewable Sustainable Energy Rev. 53 209 2016 10.1016/j.rser.2015.07.200 Wind Energy: Trends and Enabling Technologies 

  2. U.S. Department of Energy 131 2016 2016 Offshore Wind Technologies Market Report 

  3. 142 2017 2017 Offshore Wind Technologies Market Report 

  4. ASME 2017 Development of the Hywind Concept 

  5. Energy 112 2016 868 2016 Economic Feasibility of Floating Offshore Wind Farms 

  6. ISOPE-I-17-478 2017 Multiline Anchors for the OC4 Semisubmersible Floating System 

  7. Ocean Eng. 160 94 2018 10.1016/j.oceaneng.2018.04.046 System Reliability of Floating Offshore Wind Farms With Multiline Anchors 

  8. American Bureau of Shipping (ABS) 2015 Guide for Building and Classing Floating Offshore Wind Turbine Installations, Standardization 

  9. Wind Energy 19 6 1161 2016 10.1002/we.1886 Design and Model Confirmation of the Intermediate Scale VolturnUS Floating Wind Turbine Subjected to Its Extreme Design Conditions Offshore Maine 

  10. Energy Policy 46 135 2012 10.1016/j.enpol.2012.03.044 Japan's Energy Security Predicament Post-Fukushima 

  11. Energy Procedia 94 409 2016 10.1016/j.egypro.2016.09.205 Site Assessment of the Floating Wind Turbine Hywind Demo 

  12. An Assessment of the Economic Potential of Offshore Wind in the United States From 2015 to 2030 2017 An Assessment of the Economic Potential of Offshore Wind in the United States From 2015 to 2030 

  13. National Renewable Energy Laboratory (NREL) 2018 Annual Technology Baseline 

  14. Renewable Energy 66 714 2014 10.1016/j.renene.2014.01.017 Levelised Cost of Energy for Offshore Floating Wind Turbines in a Lifecycle Perspective 

  15. Proc. Int. Conf. Renewable Energies Power Qual. 1 11 5 2013 Methodology to Calculate Mooring and Anchoring Costs of Floating Offshore Wind Devices 

  16. ASME 2016 Efficient Multiline Anchor Systems for Floating Offshore Wind Turbines 

  17. ISOPE-I-17-441 2017 Reliability of Mooring Lines and Shared Anchors of Floating Offshore Wind Turbines 

  18. Renewable Energy 101 364 2017 10.1016/j.renene.2016.08.044 Performance Changes of a Floating Offshore Wind Turbine With Broken Mooring Line 

  19. Det Norske Veritas (DNV) 2013 Design of Floating Wind Turbine Structures 

  20. Int. J. Solids Struct. 32 22 3341 1995 10.1016/0020-7683(94)00306-H Genetic Algorithms in Truss Topological Optimization 

  21. Struct. Optim. 11 3-4 213 1996 Difficulties in Truss Topology Optimization With Stress, Local Buckling and System Stability Constraints 

  22. Ocean Eng. 34 10 1413 2007 10.1016/j.oceaneng.2006.10.005 Mooring Optimization of Floating Platforms Using a Genetic Algorithm 

  23. Energy Procedia 24 289 2012 10.1016/j.egypro.2012.06.111 Mooring System Optimization for Floating Wind Turbines Using Frequency Domain Analysis 

  24. Coastal Eng. J. 57 4 1550021 2015 Optimization of Mooring Systems for Floating Offshore Wind Turbines 

  25. ASME J. Mech. Des. 134 8 081002 2012 10.1115/1.4006997 An Extended Pattern Search Approach to Wind Farm Layout Optimization 

  26. ASME 2016 A Multi-Objective Real-Coded Genetic Algorithm Method for Wave Energy Converter Array Optimization 

  27. Choi, Y. J., 2007, “ Reliability Assessment of Foundations for Offshore Mooring Systems Under Extreme Environments,” Ph.D. thesis, The University of Texas at Austin, Austin, TX. 

  28. NWTC Design Codes (FAST) 2010 

  29. Definition of the Semisubmersible Floating System for Phase II of OC4 2014 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로