$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Dynamometric Investigation on Airborne Particulate Matter (PM) from Friction Materials for Automobile: Impact of Abrasive and Lubricant on PM Emission Factor 원문보기

Lubricants, v.9 no.12, 2021년, pp.118 -   

Kim, Sung-Hun (Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Icheon-si 17303, Korea) ,  Jeong, Mu Hyeok (Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Icheon-si 17303, Korea) ,  Kim, Jaegyeom (Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Icheon-si 17303, Korea) ,  Shim, Wooyoung (Department of Materials Sciences & Engineering, Multi-Scale Materials Laboratory, Yonsei University, Seoul 03722, Korea) ,  Kwon, Sung-Uk (Research Institute, Sangsin Brake Co., Ltd., Daegu 43023, Korea) ,  Lee, Jung-Ju (Research Institute, Sangsin Brake Co., Ltd., Daegu 43023, Korea) ,  Huh, Seung Hun (Analysis, Cerification & Simulation Center, Korea Institute of Ceramic Engineering and Technology, Bucheon-si 14501, Korea) ,  Pee, Jae-Hwan (Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Icheon-si 17303, Korea) ,  Kim, Jong-Young (Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Icheon-si 17303, Korea)

Abstract AI-Helper 아이콘AI-Helper

Reduction of non-exhaust airborne particulate matter (PM), leading to adverse effects in respiratory system, is an urgent task. In this work, we evaluated the impact of raw materials in friction materials on PM emission due to brake wear for passenger vehicle. Time- and temperature-dependent measure...

참고문헌 (29)

  1. Grigoratos Brake wear particle emissions: A review Environ. Sci. Pollut. Res. 2015 10.1007/s11356-014-3696-8 22 2491 

  2. 10.3390/atmos12020190 Hicks, W., Beevers, S., Tremper, A.H., Stewart, G., Priestman, M., Kelly, F.J., Lanoisellé, M., Lowry, D., and Green, D.C. (2021). Quantification of Non-Exhaust Particulate Matter Traffic Emissions and the Impact of COVID-19 Lockdown at London Marylebone Road. Atmosphere, 12. 

  3. Bukowiecki PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland Atmos. Environ. 2010 10.1016/j.atmosenv.2010.03.039 44 2330 

  4. Jeong Long-term analysis of PM2.5 from 2004 to 2017 in Toronto: Composition, sources, and oxidative potential Environ. Pollut. 2020 10.1016/j.envpol.2020.114652 263 114652 

  5. Beddows PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: Dependence upon vehicle mass and implications for battery electric vehicles Atmos. Environ. 2021 10.1016/j.atmosenv.2020.117886 244 117886 

  6. Rexeis Trend of vehicle emission levels until 2020-Prognosis based on current vehicle measurements and future emission legislation Atmos. Environ. 2009 10.1016/j.atmosenv.2008.09.034 43 4689 

  7. Harrison Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: A review Atmos. Environ. 2021 10.1016/j.atmosenv.2021.118592 262 118592 

  8. Harrison Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements Environ. Sci. Technol. 2012 10.1021/es300894r 46 6523 

  9. Garg Brake Wear Particulate Matter Emissions Environ. Sci. Technol. 2000 10.1021/es001108h 34 4463 

  10. Sanders Airborne Brake Wear Debris: Size Distributions, Composition, and a Comparison of Dynamometer and Vehicle Tests Environ. Sci. Technol. 2003 10.1021/es034145s 37 4060 

  11. Kumar Nanoparticle emissions from 11 non-vehicle exhaust sources-A review Atmos. Environ. 2013 10.1016/j.atmosenv.2012.11.011 67 252 

  12. Hagino Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles Atmos. Environ. 2016 10.1016/j.atmosenv.2016.02.014 131 269 

  13. Brunekreef Epidemiological evidence of effects of coarse airborne particles on health Eur. Respir. J. 2005 10.1183/09031936.05.00001805 26 309 

  14. Nanotoxicology: An emerging displine evolving from studies of ultrafine particles Envron. Health Perspect. 2005 10.1289/ehp.7339 113 823 

  15. Iijima Emission factor for antimony in brake abrasion dust as one of the major atmospheric antimony sources Environ. Sci. Technol. 2008 10.1021/es702137g 42 2937 

  16. Iijima Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter Atmos. Environ. 2007 10.1016/j.atmosenv.2007.02.005 41 4908 

  17. Baron, P.A., Willeke, K., and Kulkarni, P. (2011). Aerosol Measurement: Principles, Techniques, and Applications, Wiley & Sons. [3rd ed.]. Chapter 2. 

  18. Hagino Airborne brake wear particle emission due to braking and accelerating Wear 2015 10.1016/j.wear.2015.04.012 334-335 44 

  19. Mathissen Study of Brake Wear Particle Emissions: Impact of Braking and Cruising Conditions Environ. Sci. Technol. 2019 10.1021/acs.est.8b07142 53 5143 

  20. (2021, December 01). PMP-Group Particle Measurement Program (PMP) of the United Nations Working Party on Pollution and Energy (UNECE-GRPE). Available online: https://unece.org/transport/documents/2021/02/standards/un-regulation-no-154-worldwide-harmonized-light-vehicles-test. 

  21. Mathissen A novel real-world braking cycle for studying brake wear particle emissions Wear 2018 10.1016/j.wear.2018.07.020 414-415 219 

  22. Chan Review of automotive brake friction materials Proc. Inst. Mech. Eng. D J. Automob. Eng. 2004 10.1243/0954407041856773 218 953 

  23. Park Analysis of wear induced particle emissions from brake pads during the worldwide harmonized light vehicles test procedure (WLTP) Wear 2021 10.1016/j.wear.2020.203539 466-467 203539 

  24. Kim The impact of composition in non-steel and low-steel type friction materials on airborne brake wear particulate emission Tribol. Lett. 2020 10.1007/s11249-020-01361-2 68 118 

  25. Osterle On the role of copper in brake friction materials Tribol. Int. 2010 10.1016/j.triboint.2010.08.005 43 2317 

  26. Cho Tribological properties of solid lubricants (Graphite, Sb2S3, MoS2) for automotive brake friction materials Wear 2006 10.1016/j.wear.2005.04.003 260 855 

  27. Gilardi Copper Substitution and Noise Reduction in Brake Pads: Graphite Type Selection Materials 2012 10.3390/ma5112258 5 2258 

  28. Moravec On airborne nano/micro- microsized wear particles released from low-metallic automotive brakes Environ. Pollut. 2011 10.1016/j.envpol.2010.11.036 159 998 

  29. Alemani On the influence of car brake system parameters on particulate matter emissions Wear 2018 10.1016/j.wear.2017.11.011 396-397 67 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로