$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Modular 3D In Vitro Artery-Mimicking Multichannel System for Recapitulating Vascular Stenosis and Inflammation 원문보기

Micromachines, v.12 no.12, 2021년, pp.1528 -   

Cho, Minkyung (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea) ,  Park, Je-Kyun (mkcho25@kaist.ac.kr)

Abstract AI-Helper 아이콘AI-Helper

Inflammation and the immune response in atherosclerosis are complex processes involving local hemodynamics, the interaction of dysfunctional cells, and various pathological environments. Here, a modular multichannel system that mimics the human artery to demonstrate stenosis and inflammation and to ...

Keyword

참고문헌 (50)

  1. 1. Medzhitov R. Inflammation 2010: New adventures of an old flame Cell 2010 140 771 776 10.1016/j.cell.2010.03.006 20303867 

  2. 2. Chen L. Deng H. Cui H. Fang J. Zuo Z. Deng J. Li Y. Wang X. Zhao L. Inflammatory responses and inflammation-associated diseases in organs Oncotarget 2018 9 7204 10.18632/oncotarget.23208 29467962 

  3. 3. Ross R. Atherosclerosis―An inflammatory disease N. Engl. J. Med. 1999 340 115 126 10.1056/NEJM199901143400207 9887164 

  4. 4. Libby P. Ridker P.M. Maseri A. Inflammation and atherosclerosis Circulation 2002 105 1135 1143 10.1161/hc0902.104353 11877368 

  5. 5. Glezeva N. Baugh J.A. Role of inflammation in the pathogenesis of heart failure with preserved ejection fraction and its potential as a therapeutic target Heart Fail. Rev. 2014 19 681 694 10.1007/s10741-013-9405-8 24005868 

  6. 6. Gimbrone M.A. Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis Circ. Res. 2016 118 620 636 10.1161/CIRCRESAHA.115.306301 26892962 

  7. 7. Inzitari D. Eliasziw M. Gates P. Sharpe B.L. Chan R.K.T. Meldrum H.E. Barnett H.J.M. The causes and risk of stroke in patients with asymptomatic internal-carotid-artery stenosis N. Engl. J. Med. 2000 342 1693 1701 10.1056/NEJM200006083422302 10841871 

  8. 8. Truskey G.A. Endothelial cell vascular smooth muscle cell co-culture assay for high throughput screening assays for discovery of anti-angiogenesis agents and other therapeutic molecules Int. J. High Throughput Screen. 2010 2010 171 10.2147/IJHTS.S13459 21278926 

  9. 9. Inamdar N.K. Borenstein J.T. Microfluidic cell culture models for tissue engineering Curr. Opin. Biotechnol. 2011 22 681 689 10.1016/j.copbio.2011.05.512 21723720 

  10. 10. Kim S. Lee H. Chung M. Jeon N.L. Engineering of functional, perfusable 3D microvascular networks on a chip Lab Chip 2013 13 1489 1500 10.1039/c3lc41320a 23440068 

  11. 11. Tsai M. Kita A. Leach J. Rounsevell R. Huang J.N. Moake J. Ware R.E. Fletcher D.A. Lam W.A. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology J. Clin. Investig. 2011 122 408 418 10.1172/JCI58753 22156199 

  12. 12. Giridharan G.A. Nguyen M.-D. Estrada R. Parichehreh V. Hamid T. Ismahil M.A. Prabhu S.D. Sethu P. Microfluidic cardiac cell culture model (μCCCM) Anal. Chem. 2010 82 7581 7587 10.1021/ac1012893 20795703 

  13. 13. Goral V.N. Hsieh Y.-C. Petzold O.N. Clark J.S. Yuen P.K. Faris R.A. Perfusion-based microfluidic device for three-dimensional dynamic primary human hepatocyte cell culture in the absence of biological or synthetic matrices or coagulants Lab Chip 2010 10 3380 3386 10.1039/c0lc00135j 21060907 

  14. 14. Domansky K. Inman W. Serdy J. Dash A. Lim M.H. Griffith L.G. Perfused multiwell plate for 3D liver tissue engineering Lab Chip 2010 10 51 58 10.1039/B913221J 20024050 

  15. 15. Huh D. Matthews B.D. Mammoto A. Montoya-Zavala M. Hsin H.Y. Ingber D.E. Reconstituting organ-level lung functions on a chip Science 2010 328 1662 1668 10.1126/science.1188302 20576885 

  16. 16. Sung J.H. Yu J. Luo D. Shuler M.L. March J.C. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model Lab Chip 2011 11 389 392 10.1039/C0LC00273A 21157619 

  17. 17. Li M. Qian M. Kyler K. Xu J. Endothelial?vascular smooth muscle cells interactions in atherosclerosis Front. Cardiovasc. Med. 2018 5 151 10.3389/fcvm.2018.00151 30406116 

  18. 18. Oosterhoff L.A. Kruitwagen H.S. van Wolferen M.E. Van Balkom B.W. Mokry M. Lansu N. van den Dungen N.A. Penning L.C. Spanjersberg T.C. de Graaf J.W. Characterization of endothelial and smooth muscle cells from different canine vessels Front. Physiol. 2019 10 101 10.3389/fphys.2019.00101 30809157 

  19. 19. Jung S.Y. Yeom E. Microfluidic measurement for blood flow and platelet adhesion around a stenotic channel: Effects of tile size on the detection of platelet adhesion in a correlation map Biomicrofluidics 2017 11 024119 10.1063/1.4982605 28798854 

  20. 20. Ha H. Lee S.-J. Hemodynamic features and platelet aggregation in a stenosed microchannel Microvasc. Res. 2013 90 96 105 10.1016/j.mvr.2013.08.008 23994271 

  21. 21. Li M. Hotaling N.A. Ku D.N. Forest C.R. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses PLoS ONE 2014 9 e82493 10.1371/journal.pone.0082493 24404131 

  22. 22. Menon N.V. Tay H.M. Wee S.N. Li K.H.H. Hou H.W. Micro-engineered perfusable 3D vasculatures for cardiovascular diseases Lab Chip 2017 17 2960 2968 10.1039/C7LC00607A 28740980 

  23. 23. Mannino R.G. Myers D.R. Ahn B. Wang Y. Rollins M. Gole H. Lin A.S. Guldberg R.E. Giddens D.P. Timmins L.H. Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions Sci. Rep. 2015 5 12401 10.1038/srep12401 26202603 

  24. 24. Thomas A. Daniel Ou-Yang H. Lowe-Krentz L. Muzykantov V.R. Liu Y. Biomimetic channel modeling local vascular dynamics of pro-inflammatory endothelial changes Biomicrofluidics 2016 10 014101 10.1063/1.4936672 26858813 

  25. 25. van Dijk C.G.M. Brandt M.M. Poulis N. Anten J. van der Moolen M. Kramer L. Homburg E.F.G.A. Louzao-Martinez L. Pei J. Krebber M.M. A new microfluidic model that allows monitoring of complex vascular structures and cell interactions in a 3D biological matrix Lab Chip 2020 20 1827 1844 10.1039/D0LC00059K 32330215 

  26. 26. Menon N.V. Tay H.M. Pang K.T. Dalan R. Wong S.C. Wang X. Li K.H.H. Hou H.W. A tunable microfluidic 3D stenosis model to study leukocyte-endothelial interactions in atherosclerosis APL Bioeng. 2018 2 016103 10.1063/1.4993762 31069288 

  27. 27. Menon N.V. Su C. Pang K.T. Phua Z.J. Tay H.M. Dalan R. Wang X. Li K.H.H. Hou H.W. Recapitulating atherogenic flow disturbances and vascular inflammation in a perfusable 3D stenosis model Biofabrication 2020 12 045009 10.1088/1758-5090/aba501 32650321 

  28. 28. Cho M. Park J.-K. Fabrication of a Perfusable 3D In Vitro Artery-Mimicking Multichannel System for Artery Disease Models ACS Biomater. Sci. Eng. 2020 6 5326 5336 10.1021/acsbiomaterials.0c00748 33455281 

  29. 29. Urschel K. Cicha I. TNF-α in the cardiovascular system: From physiology to therapy Int. J. Interferon Cytokine Mediat. Res. 2015 7 9 25 

  30. 30. Ott L.W. Resing K.A. Sizemore A.W. Heyen J.W. Cocklin R.R. Pedrick N.M. Woods H.C. Chen J.Y. Goebl M.G. Witzmann F.A. Tumor necrosis factor-α-and interleukin-1-induced cellular responses: Coupling proteomic and genomic information J. Proteome Res. 2007 6 2176 2185 10.1021/pr060665l 17503796 

  31. 31. Holbrook J. Lara-Reyna S. Jarosz-Griffiths H. McDermott M.F. Tumour necrosis factor signalling in health and disease F1000Research 2019 8 111 10.12688/f1000research.17023.1 

  32. 32. Sawa Y. Sugimoto Y. Ueki T. Ishikawa H. Sato A. Nagato T. Yoshida S. Effects of TNF-α on leukocyte adhesion molecule expressions in cultured human lymphatic endothelium J. Histochem. Cytochem. 2007 55 721 733 10.1369/jhc.6A7171.2007 17371935 

  33. 33. Sun R.J. Muller S. Wang X. Zhuang F.Y. Stoltz J.F. Regulation of von willebrand factor of human endothelial cells exposed to laminar flows: An in vitro study Clin. Hemorheol. Microcirc. 2000 23 1 11 11214708 

  34. 34. Chiu J.-J. Chien S. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives Physiol. Rev. 2011 91 327 387 10.1152/physrev.00047.2009 21248169 

  35. 35. Chiu J.J. Wung B.S. Shyy J.Y.J. Hsieh H.J. Wang D.L. Reactive oxygen species are involved in shear stress-induced intercellular adhesion molecule-1 expression in endothelial cells Arterioscler. Thromb. Vasc. Biol. 1997 17 3570 3577 10.1161/01.ATV.17.12.3570 9437207 

  36. 36. Jilkova Z.M. Lisowska J. Manet S. Verdier C. Deplano V. Geindreau C. Faurobert E. Albiges-Rizo C. Duperray A. CCM proteins control endothelial β1 integrin dependent response to shear stress Biol. Open 2014 3 1228 1235 10.1242/bio.201410132 25432514 

  37. 37. Tsuboi H. Ando J. Korenaga R. Takada Y. Kamiya A. Flow stimulates ICAM-1 expression time and shear stress dependently in cultured human endothelial cells Biochem. Biophys. Res. Commun. 1995 206 988 996 10.1006/bbrc.1995.1140 7832815 

  38. 38. Nagel T. Resnick N. Atkinson W.J. Dewey C.F. Gimbrone M.A. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells J. Clin. Investig. 1994 94 885 891 10.1172/JCI117410 7518844 

  39. 39. Chiu J.-J. Lee P.-L. Chen C.-N. Lee C.-I. Chang S.-F. Chen L.-J. Lien S.-C. Ko Y.-C. Usami S. Chien S. Shear stress increases ICAM-1 and decreases VCAM-1 and E-selectin expressions induced by tumor necrosis factor-α in endothelial cells Arterioscler. Thromb. Vasc. Biol. 2004 24 73 79 10.1161/01.ATV.0000106321.63667.24 14615388 

  40. 40. Galbusera M. Zoja C. Donadelli R. Paris S. Morigi M. Benigni A. Figliuzzi M. Remuzzi G. Remuzzi A. Fluid shear stress modulates von Willebrand factor release from human vascular endothelium Blood 1997 90 1558 1564 10.1182/blood.V90.4.1558 9269774 

  41. 41. Matsushita K. Morrell C.N. Lowenstein C.J. Sphingosine 1-phosphate activates Weibel-Palade body exocytosis Proc. Natl. Acad. Sci. USA 2004 101 11483 11487 10.1073/pnas.0400185101 15273282 

  42. 42. Li Y. Li L. Dong F. Guo L. Hou Y. Hu H. Yan S. Zhou X. Liao L. Allen T.D. Plasma von Willebrand factor level is transiently elevated in a rat model of acute myocardial infarction Exp. Ther. Med. 2015 10 1743 1749 10.3892/etm.2015.2721 26640545 

  43. 43. Rainger G.E. Nash G.B. Cellular pathology of atherosclerosis: Smooth muscle cells prime cocultured endothelial cells for enhanced leukocyte adhesion Circ. Res. 2001 88 615 622 10.1161/01.RES.88.6.615 11282896 

  44. 44. Chen Z. Tang M. Huang D. Jiang W. Li M. Ji H. Park J. Xu B. Atchison L.J. Truskey G.A. Real-time observation of leukocyte?endothelium interactions in tissue-engineered blood vessel Lab Chip 2018 18 2047 2054 10.1039/C8LC00202A 29927449 

  45. 45. ejkova S. Kralova-Lesna I. Poledne R. Monocyte adhesion to the endothelium is an initial stage of atherosclerosis development Cor Vasa 2016 58 e419 e425 10.1016/j.crvasa.2015.08.002 

  46. 46. Mestas J. Ley K. Monocyte-endothelial cell interactions in the development of atherosclerosis Trends Cardiovasc. Med. 2008 18 228 232 10.1016/j.tcm.2008.11.004 19185814 

  47. 47. Herbin O. Regelmann A.G. Ramkhelawon B. Weinstein E.G. Moore K.J. Alexandropoulos K. Monocyte adhesion and plaque recruitment during atherosclerosis development is regulated by the adapter protein Chat-H/SHEP1 Arterioscler. Thromb. Vasc. Biol. 2016 36 1791 1801 10.1161/ATVBAHA.116.308014 27417580 

  48. 48. Srigunapalan S. Lam C. Wheeler A.R. Simmons C.A. A microfluidic membrane device to mimic critical components of the vascular microenvironment Biomicrofluidics 2011 5 013409 10.1063/1.3530598 

  49. 49. Yin W. Shanmugavelayudam S.K. Rubenstein D.A. The effect of physiologically relevant dynamic shear stress on platelet and endothelial cell activation Thromb. Res. 2011 127 235 241 10.1016/j.thromres.2010.11.021 21172720 

  50. 50. Meza D. Musmacker B. Steadman E. Stransky T. Rubenstein D.A. Yin W. Endothelial cell biomechanical responses are dependent on both fluid shear stress and tensile strain Cell. Mol. Bioeng. 2019 12 311 325 10.1007/s12195-019-00585-0 31719917 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로