$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Intense removal of Ni (Ⅱ) chelated by EDTA from wastewater via Fe3+ replacement–chelating precipitation

Process safety and environmental protection : transactions of the Institution of Chemical Engineers, Part B, v.159, 2022년, pp.1082 - 1091  

Li, Sai (Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University) ,  Yue, Tong (Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University) ,  Sun, Wei (Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University) ,  Zhang, Chenyang (Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University) ,  He, Jianyong (Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Res) ,  Han, Mingjun ,  Zhang, Hongliang ,  Yu, Heng ,  Li, Wenyuan

Abstract AI-Helper 아이콘AI-Helper

Abstract Efficient removal of Ni (Ⅱ) chelated by ethylenediaminetetraacetic acid (EDTA) from wastewater remains an important but challenging environmental problem. Therefore, a novel strategy of Fe3+ replacement–chelating precipitation was proposed to remove Ni (Ⅱ) chelated by EDT...

주제어

참고문헌 (40)

  1. Inorg. Chim. Acta Adeyemi 511 2020 10.1016/j.ica.2020.119809 The mechanisms of action involving dithiocarbamate complexes in biological systems 

  2. Inorg. Chim. Acta Akbar Ali 5 119 1971 10.1016/S0020-1693(00)95894-8 Metal chelates of dithiocarbazic acid and its derivaties. I. Complexes of dithiocarbazic acid and its S-methyl ester 

  3. J. Phys. Chem. Barr 82 1801 1978 10.1021/j100505a006 An ESCA study of the termination of the passivation of elemental metals 

  4. 10.1021/bk-1990-0416.ch001 Bassett, R.L., Melchior, D.C., 1990. Chemical Modeling of Aqueous Systems, Chemical Modeling of Aqueous Systems II. American Chemical Society, pp. 1-14. 

  5. J. Hazard Mater. Biswas 418 2021 10.1016/j.jhazmat.2021.126308 Comparative evaluation of dithiocarbamate-modified cellulose and commercial resins for recovery of precious metals from aqueous matrices 

  6. J. Organomet. Chem. Bonati 10 257 1967 10.1016/S0022-328X(00)93085-7 Organotin(IV) N,N-disubstituted dithiocarbamates 

  7. Phys. Chem. Chem. Phys. Chai 10 6615 2008 10.1039/b810189b Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections 

  8. Inorg. Chem. Chant 14 1894 1975 10.1021/ic50150a033 Tris(dithiocarbamato) complexes of iron(II), iron(III), and iron(IV). Electrochemical study 

  9. Inorg. Chem. Coucouvanis 6 2047 1967 10.1021/ic50057a026 Square-planar sulfur complexes. VI. Reactions of bases with xanthates, dithiocarbamates, and dithiolates of nickel(II) 

  10. Inorg. Chem. Fackler 7 181 1968 10.1021/ic50059a045 Bernstein’s bond length-bond order relation is applied to carbon-nitrogden, carbon-oxygen, and nitrogen-oxygen bonds in metal complexes 

  11. J. Inorg. Nucl. Chem. Fackler 26 2035 1964 10.1016/0022-1902(64)80032-4 A tetrahedral complex of nickel(II) with the pseudo-halide cyanate 

  12. J. Hazard Mater. Fu 142 437 2007 10.1016/j.jhazmat.2006.08.036 Comparative investigation of N,N′-bis-(dithiocarboxy)piperazine and diethyldithiocarbamate as precipitants for Ni(II) in simulated wastewater 

  13. Process Saf. Environ. Prot. Garcia-Segura 113 48 2018 10.1016/j.psep.2017.09.014 Electrochemical oxidation remediation of real wastewater effluents - A review 

  14. J. Hazard Mater. Gylien 159 446 2008 10.1016/j.jhazmat.2008.02.066 Decontamination of solutions containing EDTA using metallic iron 

  15. Sep. Purif. Technol. He 223 55 2019 10.1016/j.seppur.2019.04.071 Computational and experimental investigation of dimethyldithiocarbamate for effective recovery of cobalt and nickel from the leach liquor of high manganese slag 

  16. J. Org. Chem. Humeres 73 7189 2008 10.1021/jo801015t Mechanisms of acid decomposition of dithiocarbamates. 5. Piperidyl dithiocarbamate and analogues 

  17. J. Mol. Struct. Khan 875 478 2008 10.1016/j.molstruc.2007.05.020 Piperazine pivoted transition metal dithiocarbamates 

  18. J. Photochem. Photobiol. A: Chem. Kocot 179 176 2006 10.1016/j.jphotochem.2005.08.016 Photochemistry of the Fe(III)-EDTA complexes: a mechanistic study 

  19. Environ. Sci. Technol. Laperche 31 2745 1997 10.1021/es961011o Effect of apatite amendments on plant uptake of lead from contaminated soil 

  20. J. Environ. Sci. Li 24 269 2012 10.1016/S1001-0742(11)60765-1 Photodegradation of amoxicillin by catalyzed Fe3+/H2O2 process 

  21. J. Am. Chem. Soc. Maigut 130 14556 2008 10.1021/ja802842q Triggering water exchange mechanisms via chelate architecture. shielding of transition metal centers by aminopolycarboxylate spectator ligands 

  22. J. Phys. Chem. B Marenich 113 6378 2009 10.1021/jp810292n Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions 

  23. J. Hazard Mater. Muhammad 419 2021 10.1016/j.jhazmat.2021.126450 Assessment of industrial wastewater for potentially toxic elements, human health (dermal) risks, and pollution sources: a case study of Gadoon Amazai industrial estate, Swabi, Pakistan 

  24. J. Water Process Eng. Nguyen 39 2021 10.1016/j.jwpe.2020.101836 Fenton/ozone-based oxidation and coagulation processes for removing metals (Cu, Ni)-EDTA from plating wastewater 

  25. Water Res Pan 145 731 2018 10.1016/j.watres.2018.09.020 CaO2 based Fenton-like reaction at neutral pH: accelerated reduction of ferric species and production of superoxide radicals 

  26. J. Electron Spectrosc. Relat. Phenom. Payne 35 113 1985 10.1016/0368-2048(85)80046-3 (II) Infrared and X-ray photoelectron spectroscopy of some transition metal dithiocarbamates and xanthates 

  27. J. Chem. Phys. Reed 83 735 1985 10.1063/1.449486 Natural population analysis 

  28. Chemosphere Roverso 264 2021 10.1016/j.chemosphere.2020.128487 New insights in the slow ligand exchange reaction between Cr(III)-EDTA and Fe(III), and direct analysis of free and complexed EDTA in tannery wastewaters by liquid chromatography - Tandem mass spectrometry 

  29. Process Saf. Environ. Prot. Saien 95 114 2015 10.1016/j.psep.2015.02.020 Simultaneous photocatalytic treatment of Cr(VI), Ni(II) and SDBS in aqueous solutions: evaluation of removal efficiency and energy consumption 

  30. Sci. Total Environ. Shi 752 2021 10.1016/j.scitotenv.2020.141930 Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides 

  31. Process Saf. Environ. Prot. Silva 147 798 2021 10.1016/j.psep.2021.01.005 Contrasting the performance of photo-Fenton at neutral pH in the presence of different organic iron-complexes using hydrogen peroxide or persulfate as oxidants for naproxen degradation and removal of antimicrobial activity 

  32. Phys. Rev. Sokolowski 110 1958 10.1103/PhysRev.110.776 Chemical shift effect in inner electronic levels of Cu due to oxidation 

  33. Water Res. Stala 203 2021 10.1016/j.watres.2021.117523 A review of polyampholytic ion scavengers for toxic metal ion removal from aqueous systems 

  34. Water Res. Thalmann 134 170 2018 10.1016/j.watres.2018.01.042 Ozonation of municipal wastewater effluent containing metal sulfides and metal complexes: kinetics and mechanisms 

  35. Sci. Total Environ. Tibbett 779 2021 10.1016/j.scitotenv.2021.146260 The transfer of trace metals in the soil-plant-arthropod system 

  36. Phys. Chem. Chem. Phys. Weigend 8 1057 2006 10.1039/b515623h Accurate coulomb-fitting basis sets for H to Rn 

  37. Phys. Chem. Chem. Phys. Weigend 7 3297 2005 10.1039/b508541a Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy 

  38. Water Res Xu 87 378 2015 10.1016/j.watres.2015.09.025 A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation 

  39. Chemosphere Ye 273 2021 10.1016/j.chemosphere.2020.128503 Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: a review 

  40. Sci. Total Environ. Zhu 678 253 2019 10.1016/j.scitotenv.2019.04.416 Removal of chelated heavy metals from aqueous solution: a review of current methods and mechanisms 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로