$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

ConvAE-LSTM: Convolutional Autoencoder Long Short-Term Memory Network for Smartphone-Based Human Activity Recognition 원문보기

IEEE access : practical research, open solutions, v.10, 2022년, pp.4137 - 4156  

Thakur, Dipanwita ,  Biswas, Suparna ,  Ho, Edmond S. L. ,  Chattopadhyay, Samiran

초록이 없습니다.

참고문헌 (102)

  1. Wannenburg, Johan, Malekian, Reza. Physical Activity Recognition From Smartphone Accelerometer Data for User Context Awareness Sensing. IEEE transactions on systems, man, and cybernetics. Systems, vol.47, no.12, 3142-3149.

  2. Bi, Haixia, Perello-Nieto, Miquel, Santos-Rodriguez, Raul, Flach, Peter. Human Activity Recognition Based on Dynamic Active Learning. IEEE journal of biomedical and health informatics, vol.25, no.4, 922-934.

  3. 10.18356/88fa44e7-en 

  4. Ghasemzadeh, H, Jafari, R. Physical Movement Monitoring Using Body Sensor Networks: A Phonological Approach to Construct Spatial Decision Trees. IEEE transactions on industrial informatics, vol.7, no.1, 66-77.

  5. Li, Pengfei, Wang, Yu, Tian, Yu, Zhou, Tian-Shu, Li, Jing-Song. An Automatic User-Adapted Physical Activity Classification Method Using Smartphones. IEEE transactions on bio-medical engineering, vol.64, no.3, 706-714.

  6. Chen, Zhenghua, Jiang, Chaoyang, Xie, Lihua. A Novel Ensemble ELM for Human Activity Recognition Using Smartphone Sensors. IEEE transactions on industrial informatics, vol.15, no.5, 2691-2699.

  7. Wang, Yi, Jiang, Xinli, Cao, Rongyu, Wang, Xiyang. Robust Indoor Human Activity Recognition Using Wireless Signals. Sensors, vol.15, no.7, 17195-17208.

  8. Ronao, C.A., Cho, S.B.. Human activity recognition with smartphone sensors using deep learning neural networks. Expert systems with applications, vol.59, 235-244.

  9. Monteiro-Guerra, Francisco, Rivera-Romero, Octavio, Fernandez-Luque, Luis, Caulfield, Brian. Personalization in Real-Time Physical Activity Coaching Using Mobile Applications: A Scoping Review. IEEE journal of biomedical and health informatics, vol.24, no.6, 1738-1751.

  10. Kwapisz, Jennifer R., Weiss, Gary M., Moore, Samuel A.. Activity recognition using cell phone accelerometers. SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowlege Discovery & Data Mining, vol.12, no.2, 74-82.

  11. Proc. Eur. Symp. Artif. Neural Netw., Comput. Intell. Mach. Learn. A public domain dataset for human activity recognition using smartphones Anguita 1 

  12. 10.1109/ISMSIT.2018.8567275 

  13. Voicu, Robert-Andrei, Dobre, Ciprian, Bajenaru, Lidia, Ciobanu, Radu-Ioan. Human Physical Activity Recognition Using Smartphone Sensors. Sensors, vol.19, no.3, 458-.

  14. 10.1007/978-3-319-26561-2_6 

  15. Bulling, Andreas, Blanke, Ulf, Schiele, Bernt. A tutorial on human activity recognition using body-worn inertial sensors. ACM computing surveys, vol.46, no.3, 1-33.

  16. Yao, Lina, Sheng, Quan Z., Benatallah, Boualem, Dustdar, Schahram, Wang, Xianzhi, Shemshadi, Ali, Kanhere, Salil S.. WITS: an IoT-endowed computational framework for activity recognition in personalized smart homes. Computing, vol.100, no.4, 369-385.

  17. Cvetković, Božidara, Szeklicki, Robert, Janko, Vito, Lutomski, Przemyslaw, Luštrek, Mitja. Real-time activity monitoring with a wristband and a smartphone. Information fusion, vol.43, 77-93.

  18. 10.4108/icst.mobicase.2014.257786 

  19. Lara, Oscar D., Labrador, Miguel A.. A Survey on Human Activity Recognition using Wearable Sensors. IEEE Communications surveys and tutorials, vol.15, no.3, 1192-1209.

  20. 10.1145/1107548.1107591 

  21. Proc. 24th Int. Conf. Artif. Intell. Deep convolutional neural networks on multichannel time series for human activity recognition Yang 3995 

  22. CoRR Deep activity recognition models with triaxial accelerometers Alsheikh abs/1511.04664 1 2015 

  23. Proc. 25th Int. Joint Conf. Artif. Intell. Deep, convolutional, and recurrent models for human activity recognition using wearables Hammerla 1533 

  24. Wang, Yasi, Yao, Hongxun, Zhao, Sicheng. Auto-encoder based dimensionality reduction. Neurocomputing, vol.184, 232-242.

  25. Ryu, Seunghyoung, Choi, Hyungeun, Lee, Hyoseop, Kim, Hongseok. Convolutional Autoencoder Based Feature Extraction and Clustering for Customer Load Analysis. IEEE transactions on power systems : a publication of the Power Engineering Society, vol.35, no.2, 1048-1060.

  26. 10.1145/1553374.1553453 

  27. Essien, Aniekan, Giannetti, Cinzia. A Deep Learning Model for Smart Manufacturing Using Convolutional LSTM Neural Network Autoencoders. IEEE transactions on industrial informatics, vol.16, no.9, 6069-6078.

  28. Proc. 28th Int. Conf. Neural Inf. Process. Syst. Convolutional LSTM network: A machine learning approach for precipitation nowcasting Shi 1 802 

  29. Steven Eyobu, Odongo, Han, Dong Seog. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network. Sensors, vol.18, no.9, 2892-.

  30. Thakur, Dipanwita, Biswas, Suparna. Smartphone based human activity monitoring and recognition using ML and DL: a comprehensive survey. Journal of ambient intelligence and humanized computing, vol.11, no.11, 5433-5444.

  31. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.. Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine. Lecture notes in computer science, vol.7657, 216-223.

  32. 10.1109/ChiCC.2016.7553975 

  33. 10.23919/ICITST.2017.8356374 

  34. 10.1145/3195106.3195157 

  35. 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00071 

  36. 10.1109/ECACE.2019.8679226 

  37. Zhu, Jiadong, San-Segundo, Rubén, Pardo, José M.. Feature extraction for robust physical activity recognition. Human-centric computing and information sciences, vol.7, no.1, 16-.

  38. 10.1109/IntelCIS.2015.7397283 

  39. 10.1109/ICCCC.2016.7496749 

  40. Nguyen, Nhan Duc, Bui, Duong Trong, Truong, Phuc Huu, Jeong, Gu-Min. Position-Based Feature Selection for Body Sensors regarding Daily Living Activity Recognition. Journal of sensors, vol.2018, 1-13.

  41. Attal, Ferhat, Mohammed, Samer, Dedabrishvili, Mariam, Chamroukhi, Faicel, Oukhellou, Latifa, Amirat, Yacine. Physical Human Activity Recognition Using Wearable Sensors. Sensors, vol.15, no.12, 31314-31338.

  42. Ponce, Hiram, Martínez-Villaseñor, María de Lourdes, Miralles-Pechuán, Luis. A Novel Wearable Sensor-Based Human Activity Recognition Approach Using Artificial Hydrocarbon Networks. Sensors, vol.16, no.7, 1033-.

  43. Jansi, R., Amutha, R.. A novel chaotic map based compressive classification scheme for human activity recognition using a tri-axial accelerometer. Multimedia tools and applications, vol.77, no.23, 31261-31280.

  44. Rosati, Samanta, Balestra, Gabriella, Knaflitz, Marco. Comparison of Different Sets of Features for Human Activity Recognition by Wearable Sensors. Sensors, vol.18, no.12, 4189-.

  45. Köping, Lukas, Shirahama, Kimiaki, Grzegorzek, Marcin. A general framework for sensor-based human activity recognition. Computers in biology and medicine, vol.95, 248-260.

  46. Ravi, Daniele, Wong, Charence, Lo, Benny, Yang, Guang-Zhong. A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices. IEEE journal of biomedical and health informatics, vol.21, no.1, 56-64.

  47. 10.1007/978-3-030-01298-4_10 

  48. Appl. Soft Comput. Real-time human activity recognition from accelerometer data using convolutional neural networks Andrey 62 915 2017 

  49. Moya Rueda, Fernando, Grzeszick, René, Fink, Gernot A., Feldhorst, Sascha, Ten Hompel, Michael. Convolutional Neural Networks for Human Activity Recognition Using Body-Worn Sensors. Informatics, vol.5, no.2, 26-.

  50. 10.1109/IranianCEE.2019.8786578 

  51. 10.1109/ICIT48102.2019.00061 

  52. Zebin, Tahmina, Scully, Patricia J., Peek, Niels, Casson, Alexander J., Ozanyan, Krikor B.. Design and Implementation of a Convolutional Neural Network on an Edge Computing Smartphone for Human Activity Recognition. IEEE access : practical research, open solutions, vol.7, 133509-133520.

  53. Zhou, Baoding, Yang, Jun, Li, Qingquan. Smartphone-Based Activity Recognition for Indoor Localization Using a Convolutional Neural Network. Sensors, vol.19, no.3, 621-.

  54. Qi, Wen, Su, Hang, Yang, Chenguang, Ferrigno, Giancarlo, De Momi, Elena, Aliverti, Andrea. A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone. Sensors, vol.19, no.17, 3731-.

  55. 10.1109/SysCon47679.2020.9275924 

  56. Cruciani, Federico, Vafeiadis, Anastasios, Nugent, Chris, Cleland, Ian, McCullagh, Paul, Votis, Konstantinos, Giakoumis, Dimitrios, Tzovaras, Dimitrios, Chen, Liming, Hamzaoui, Raouf. Feature learning for Human Activity Recognition using Convolutional Neural Networks : A case study for Inertial Measurement Unit and audio data. Ccf transactions on pervasive computing and interaction, vol.2, no.1, 18-32.

  57. Yen, Chih-Ta, Liao, Jia-Xian, Huang, Yi-Kai. Human Daily Activity Recognition Performed Using Wearable Inertial Sensors Combined With Deep Learning Algorithms. IEEE access : practical research, open solutions, vol.8, 174105-174114.

  58. Wan, Shaohua, Qi, Lianyong, Xu, Xiaolong, Tong, Chao, Gu, Zonghua. Deep Learning Models for Real-time Human Activity Recognition with Smartphones. Mobile networks and applications : MONET, vol.25, no.2, 743-755.

  59. Li, Y., Shi, D., Ding, B., Liu, D.. Unsupervised Feature Learning for Human Activity Recognition Using Smartphone Sensors. Lecture notes in computer science, vol.8891, 99-107.

  60. Hasan, M., Roy-Chowdhury, A.K.. Continuous Learning of Human Activity Models Using Deep Nets. Lecture notes in computer science, vol.8691, 705-720.

  61. Int. J. Comput. Sci. Netw. Secur. An effective deep autoencoder approach for online smartphonebased human activity recognition Almaslukh 17 4 160 2017 

  62. 10.1145/3341162.3344854 

  63. Gao, Xile, Luo, Haiyong, Wang, Qu, Zhao, Fang, Ye, Langlang, Zhang, Yuexia. A Human Activity Recognition Algorithm Based on Stacking Denoising Autoencoder and LightGBM. Sensors, vol.19, no.4, 947-.

  64. Ozcan, Tayyip, Basturk, Alper. Human action recognition with deep learning and structural optimization using a hybrid heuristic algorithm. Cluster computing : the journal of networks, software tools and applications, vol.23, no.4, 2847-2860.

  65. Prabono, Aria Ghora, Yahya, Bernardo Nugroho, Lee, Seok-Lyong. Atypical Sample Regularizer Autoencoder for Cross-Domain Human Activity Recognition. Information systems frontiers, vol.23, no.1, 71-80.

  66. Garcia, Kemilly Dearo, de Sá, Cláudio Rebelo, Poel, Mannes, Carvalho, Tiago, Mendes-Moreira, João, Cardoso, João M.P., de Carvalho, André C.P.L.F., Kok, Joost N.. An ensemble of autonomous auto-encoders for human activity recognition. Neurocomputing, vol.439, 271-280.

  67. 10.1007/978-3-030-75768-7_28 

  68. 10.2991/iccsae-15.2016.173 

  69. 10.1145/3286978.3287024 

  70. 10.1109/EMBC.2018.8513115 

  71. 10.1109/ICMCCE.2018.00052 

  72. Zhao, Yu, Yang, Rennong, Chevalier, Guillaume, Xu, Ximeng, Zhang, Zhenxing. Deep Residual Bidir-LSTM for Human Activity Recognition Using Wearable Sensors. Mathematical problems in engineering, vol.2018, 1-13.

  73. Ordóñez, Francisco Javier, Roggen, Daniel. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition. Sensors, vol.16, no.1, 115-.

  74. 10.1109/PDCAT46702.2019.00055 

  75. Wang, Huaijun, Zhao, Jing, Li, Junhuai, Tian, Ling, Tu, Pengjia, Cao, Ting, An, Yang, Wang, Kan, Li, Shancang. Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning Techniques. Security and communication networks, vol.2020, 1-12.

  76. 10.1109/ICAIIC48513.2020.9065078 

  77. Ercolano, Giovanni, Rossi, Silvia. Combining CNN and LSTM for activity of daily living recognition with a 3D matrix skeleton representation. Intelligent service robotics, vol.14, no.2, 175-185.

  78. Ye, W., Cheng, J., Yang, F., Xu, Y.. Two-Stream Convolutional Network for Improving Activity Recognition Using Convolutional Long Short-Term Memory Networks. IEEE access : practical research, open solutions, vol.7, 67772-67780.

  79. Xu, Cheng, Chai, Duo, He, Jie, Zhang, Xiaotong, Duan, Shihong. InnoHAR: A Deep Neural Network for Complex Human Activity Recognition. IEEE access : practical research, open solutions, vol.7, 9893-9902.

  80. Xia, Kun, Huang, Jianguang, Wang, Hanyu. LSTM-CNN Architecture for Human Activity Recognition. IEEE access : practical research, open solutions, vol.8, 56855-56866.

  81. 10.1109/ICC.2018.8422895 

  82. Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S.T., Troster, G., Millan, J.d.R., Roggen, D.. The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern recognition letters, vol.34, no.15, 2033-2042.

  83. 10.1109/INSS.2010.5573462 

  84. Zappi, P., Lombriser, C., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., Troster, G.. Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selection. Lecture notes in computer science, vol.4913, 17-33.

  85. 10.1145/2003653.2003656 

  86. Bachlin, M., Plotnik, M., Roggen, D., Maidan, I., Hausdorff, J.M., Giladi, N., Troster, G.. Wearable Assistant for Parkinson’s Disease Patients With the Freezing of Gait Symptom. IEEE transactions on information technology in biomedicine : a publication of the IEEE Engineering in Medicine and Biology Society, vol.14, no.2, 436-446.

  87. 10.1007/978-3-030-10997-4_33 

  88. 10.1109/ISWC.2012.13 

  89. Vaizman, Yonatan, Ellis, Katherine, Lanckriet, Gert. Recognizing Detailed Human Context in the Wild from Smartphones and Smartwatches. IEEE pervasive computing, vol.16, no.4, 62-74.

  90. Karim, Fazle, Majumdar, Somshubra, Darabi, Houshang, Harford, Samuel. Multivariate LSTM-FCNs for time series classification. Neural networks : the official journal of the International Neural Network Society, vol.116, 237-245.

  91. 10.23919/ChiCC.2019.8865142 

  92. Liu, Xingchen, Zhou, Qicai, Zhao, Jiong, Shen, Hehong, Xiong, Xiaolei. Fault Diagnosis of Rotating Machinery under Noisy Environment Conditions Based on a 1-D Convolutional Autoencoder and 1-D Convolutional Neural Network. Sensors, vol.19, no.4, 972-.

  93. 10.7551/mitpress/7503.003.0024 

  94. Layer Wrappers Chollet 2015 

  95. Masci, J., Meier, U., Ciresan, D., Schmidhuber, J.. Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction. Lecture notes in computer science, vol.6791, 52-59.

  96. Hochreiter, Sepp, Schmidhuber, Jürgen. Long Short-Term Memory. Neural computation, vol.9, no.8, 1735-1780.

  97. arXiv:1412.6980 Adam: A method for stochastic optimization Kingma 2014 

  98. Cawley, Gavin C., Talbot, Nicola L. C.. Efficient approximate leave-one-out cross-validation for kernel logistic regression. Machine learning, vol.71, no.2, 243-264.

  99. 10.1109/EUVIP47703.2019.8946180 

  100. 10.2307/2279372 

  101. 10.1214/aoms/1177731944 

  102. Armstrong, Richard A.. When to use the Bonferroni correction. Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians (Optometrists), vol.34, no.5, 502-508.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로