$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Enhancing the decoding accuracy of EEG signals by the introduction of anchored-STFT and adversarial data augmentation method 원문보기

Scientific reports, v.12, 2022년, pp.4245 -   

Ali, Omair (Faculty of Medicine, Department of Neurosurgery, University Hospital Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany) ,  Saif-ur-Rehman, Muhammad (Department of Computer Science, Ruhr-West University of Applied Science, Mü) ,  Dyck, Susanne (lheim an der Ruhr, Germany) ,  Glasmachers, Tobias (Faculty of Medicine, Department of Neurosurgery, University Hospital Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany) ,  Iossifidis, Ioannis (Institut Fü) ,  Klaes, Christian (r Neuroinformatik, Ruhr University Bochum, Bochum, Germany)

Abstract AI-Helper 아이콘AI-Helper

Brain-computer interfaces (BCIs) enable communication between humans and machines by translating brain activity into control commands. Electroencephalography (EEG) signals are one of the most used brain signals in non-invasive BCI applications but are often contaminated with noise. Therefore, it is ...

참고문헌 (54)

  1. 1. Graimann B Allison B Pfurtscheller G Brain-Computer Interfaces: A Gentle Introduction 2010 Springer 

  2. 2. Kübler A Furdea A Halder S Hammer EM Nijboer F Kotchoubey B A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients Ann. N. Y. Acad. Sci. 2009 10.1111/j.1749-6632.2008.04122.x 19351359 

  3. 3. Klaes C Kellis S Afalo T Lee B Kelsie P Shanfield K Hayes-Jackson S Aisen M Heck C Liu C Andersen RA Hand shape representations in the human posterior parietal cortex J. Neurosci. 2015 35 15466 15476 10.1523/JNEUROSCI.2747-15.2015 26586832 

  4. 4. Kellis S Miller K Thomson K Brown R House P Greger B Decoding spoken words using local field potentials recorded from the cortical surface J. Neural Eng. 2010 7 056007 10.1088/1741-2560/7/5/056007 20811093 

  5. 5. Aflalo T Kellis S Klaes C Lee B Shi Y Pejsa K Shanfield K Hayes-Jackson S Aisen M Heck C Liu C Andersen RA Decoding motor imagery from the posterior parietal cortex of a tetraplegic human Science 2015 348 906 910 10.1126/science.aaa5417 25999506 

  6. 6. Ajiboye AB Willett FR Young D Memberg WD Murphy BA Miller JP Walter BL Sweet JA Hoyen HA Keith MW Peckham PH Simeral JD Kirsch RF Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: A proof-of-concept demonstration Lancet 2017 389 10081 1821 1830 10.1016/S0140-6736(17)30601-3 28363483 

  7. 7. Choi J Kim S Ryu R Kim S Sohn J Implantable neural probes for brain-machine interfaces - current developments and future prospects Exp. Neurobiol. 2018 27 6 453 471 10.5607/en.2018.27.6.453 30636899 

  8. 8. Pfurtscheller G Lopes da Silva F Event-related EEG/MEG synchronization and desynchronization: Basic principles Clin. Neurophysiol. 1999 110 1842 1857 10.1016/S1388-2457(99)00141-8 10576479 

  9. 9. Müller-Gerking J Pfurtscheller G Flyvbjerg H Designing optimal spatial filters for single-trial EEG classification in a movement task Clin. Neurophysiol. 1999 110 787 798 10.1016/S1388-2457(98)00038-8 10400191 

  10. 10. Grosse-Wentrup M Buss M Multiclass common spatial patterns and information theoretic feature extraction IEEE Trans. Biomed. Eng. 2008 55 1991 2000 10.1109/TBME.2008.921154 18632362 

  11. 11. Ang K Chin Z Wang C Guan C Zhang H Filter bank common spatial pattern algorithm on BCI competition IV Datasets 2a and 2b Front. Neurosci. 2012 10.3389/fnins.2012.00039 22479236 

  12. 12. Ramoser H Muller-Gerking J Pfurtscheller G Optimal spatial filtering of single trial EEG during imagined hand movement IEEE Trans. Rehabil. Eng. 2000 10.1109/86.895946 11204035 

  13. 13. Mousavi EA Maller JJ Fitzgerald PB Lithgow BJ Wavelet Common Spatial Pattern in asynchronous offline brain computer interfaces Biomed. Signal Process. Control 2011 6 121 128 10.1016/j.bspc.2010.08.003 

  14. 14. Nicolas-Alonso LF Gomez-Gil J Brain computer interfaces, a review Sensors 2012 10.3390/s120201211 22438708 

  15. 15. Tabar YR Halici U A novel deep learning approach for classification of EEG motor imagery signals J. Neural Eng. 2017 10.1088/1741-2560/14/1/016003 27900952 

  16. 16. Li F He F Wang F Zhang D Xia Y Li X A novel simplified convolutional neural network classification algorithm of motor imagery EEG signals based on deep learning Appl. Sci. 2020 10 1605 10.3390/app10051605 

  17. 17. Fukunaga K Introduction to Statistical Pattern Recognition 2013 Elsevier 

  18. 18. Firat Ince N Arica S Tewfik A Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings J. Neural Eng. 2006 10.1088/1741-2560/3/3/006 

  19. 19. Schlögl A Lee F Bischof H Pfurtscheller G Characterization of four-class motor imagery EEG data for the BCI-competition 2005 J. Neural Eng. 2005 10.1088/1741-2560/2/4/L02 16317224 

  20. 20. Nielsen TD Jensen FV Bayesian Networks and Decision Graphs 2001 Springer 

  21. 21. Cortes C Vapnik V Support-vector networks Mach. Learn. 1995 20 273 297 

  22. 22. Shah ZH Müller M Wang T-C Scheidig PM Schneider A Schüttpelz M Huser T Schenck W Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images bioRxiv 2020 12 988 

  23. 23. Ren S He K Girshick R Sun J Faster R-CNN: Towards real-time object detection with region proposal networks IEEE Trans. Pattern Anal. Mach. Intell. 2017 39 6 1137 1149 10.1109/TPAMI.2016.2577031 27295650 

  24. 24. Saif-ur-Rehman M Lienkämper R Parpaley Y Wellmer J Liu C Lee B Kellis S Andersen R Iossifidis I Glasmachers T Klaes C SpikeDeeptector: A deep-learning based method for detection of neural spiking activity J. Neural Eng. 2019 16 5 10.1088/1741-2552/ab1e63 

  25. 25. Saif-ur-Rehman M Ali ODS Lienkämper R Metzler M Parpaley Y Wellmer J Liu C Lee B Kellis S Iossifidis I Glasmachers T Klaes C SpikeDeep-Classifier: A deep-learning based fully automatic offline spike sorting algorithm J. Neural Eng. 2020 10.1088/1741-2552/abc8d4 

  26. 26. Issar D Williamson RC Khanna SB Smith MA A neural network for online spike classification that improves decoding accuracy J. Neurophysiol. 2020 123 4 1472 1485 10.1152/jn.00641.2019 32101491 

  27. 27. An X Kuang D Guo X Zhao Y He L A deep learning method for classification of EEG data based on motor imagery Intell. Comput. Bioinform. 2014 10.1007/978-3-319-09330-7_25 

  28. 28. Wulsin DF Gupta JR Mani R Blanco JA Litt B Modeling electroencephalography waveforms with semi-supervised deep belief nets: Fast classification and anomaly measurement J. Neural Eng. 2011 10.1088/1741-2560/8/3/036015 21525569 

  29. 29. Ren, Y. & Wu, Y. Convolutional deep belief networks for feature extraction of EEG signal. In International Joint Conference on Neural Networks (IJCNN) , Beijing (2014). 

  30. 30. Yang, H., Sakhavi, S., Ang, K. K. & Guan, C. On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) , Milan (2015). 

  31. 31. Bashivan, P., Rish, I., Yeasin, M. & Codella, N. Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv, https://arxiv.org/abs/1511.06448 (2015) 

  32. 32. Dai G Zhou J Huang J Wang N HS-CNN: A CNN with hybrid convolution scale for EEG motor imagery classification J. Neural Eng. 2020 17 016025 10.1088/1741-2552/ab405f 31476743 

  33. 33. Zhang C Kim Y-K Eskandarian A EEG-inception: An accurate and robust end-to-end neural network for EEG-based motor imagery classification J. Neural Eng. 2021 18 4 046014 10.1088/1741-2552/abed81 

  34. 34. Tangermann M Müller K-R Aertsen A Birbaumer N Braun C Brunner C Leeb R Mehring C Miller K Mueller-Putz G Benjamin B Review of the BCI competition IV Front. Neurosci. 2012 6 00055 10.3389/fnins.2012.00055 

  35. 35. Schlögl A Outcome of the BCI-competition 2003 on the Graz data set 2003 Graz University of Technology 

  36. 36. DebnathJean, L. & Antoine, J.-P. Wavelet Transforms and Their Applications, Louvain-la-Neuve: Physics Today (2003). 

  37. 37. Goodfellow, I. J., Shlens, J. & Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv, https://arxiv.org/abs/1412.6572 (2014). 

  38. 38. Pfurtscheller G Lopes Da Silva FH Event-related EEG/MEG synchronization and desynchronization: Basic principles Clin. Neurophysiol. 1999 110 11 1842 1857 10.1016/S1388-2457(99)00141-8 10576479 

  39. 39. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016). 

  40. 40. Suk, H.-I. & Seong-Whan, L. Data-driven frequency bands selection in EEG-based brain-computer interface. In International Workshop on Pattern Recognition in NeuroImaging . IEEE, 2011, 25–28 (2011). 

  41. 41. Gandhi, V., Arora, V., Behera, L., Prasad, G., Coyle, D. & McGinnity, T. EEG denoising with a recurrent quantum neural network for a brain-computer interface. In In The 2011 International Joint Conference on Neural Networks. IEEE (2011). 

  42. 42. Shahid, S., Sinha, R. & Prasad, G. A bispectrum approach to feature extraction for a motor imagery based brain-computer interfacing system. In 18th European Signal Processing Conference . IEEE, 2010 (2010). 

  43. 43. Raza H Cecotti H Li Y Adaptive learning with covariate shift-detection for motor imagery-based brain–computer interface Soft Comput. 2016 20 3085 10.1007/s00500-015-1937-5 

  44. 44. Gaur P Gupta H Chowdhury A McCreadie K BilasPachori R Wang H A sliding window common spatial pattern for enhancing motor imagery classification in EEG-BCI IEEE Trans. Instrum. Meas. 2021 70 1 9 10.1109/TIM.2021.3051996 33776080 

  45. 45. Barachant A Bonnet S Congedo M Jutten C Classification of covariance matrices using a Riemannian-based kernel for BCI applications Neurocomputing 2013 112 172 178 10.1016/j.neucom.2012.12.039 

  46. 46. Lawhern VJ Solon AJ Waytowich NR Gordon SM Hung CP Lance BJ EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces J. Neural Eng. 2018 15 0560 10.1088/1741-2552/aace8c 

  47. 47. Ozdenizi O Erdogmus D Information theoretic feature transformation learning for brain interfaces IEEE Trans. Biomed. Eng. 2020 67 1 69 78 10.1109/TBME.2019.2908099 30932828 

  48. 48. Tibor Schirrmeister R Tobias Springenberg J Dominique Josef Fiederer L Glasstetter M Eggensperger K Tangermann M Hutter F Burgard W Ball T Deep learning with convolutional neural networks for EEG decoding and visualization Hum. Brain Mapp. 2017 38 11 5391 5420 10.1002/hbm.23730 28782865 

  49. 49. Zheng, Q., Zhu, F., & Heng, P.-A. Robust support matrix machine for single trial EEG classification. In IEEE Transactions on Neural Systems and Rehabilitation Engineering (2018). 

  50. 50. Shahid S Prasad G Bispectrum-based feature extraction technique for devising a practical brain–computer interface J. Neural Eng. 2011 8 025014 10.1088/1741-2560/8/2/025014 21436530 

  51. 51. Lemm S Schäfer C Curio G BCI competition 2003-data set III: Probabilistic modeling of sensorimotor μ rhythms for classification of imaginary hand movements IEEE Trans. Biomed. Eng. 2004 51 1077 1080 10.1109/TBME.2004.827076 15188882 

  52. 52. Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv, https://arxiv.org/abs/1506.01497 (2015). 

  53. 53. Jiang, X. & Zhang Xiao, W. D. Active Learning for Black-Box Adversarial Attacks in EEG-Based Brain-Computer Interfaces. In IEEE Symposium Series on Computational Intelligence , Xiamen, China (2019). 

  54. 54. Feng, B., Wang, Y. & Ding, Y. Saga: Sparse Adversarial Attack on EEG-Based Brain Computer Interface. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) , Toronto, ON, Canada (2021). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로