$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The Fibrinogen-like Domain of ANGPTL3 Facilitates Lipolysis in 3T3-L1 Cells by Activating the Intracellular Erk Pathway 원문보기

Biomolecules, v.12 no.4, 2022년, pp.585 -   

Bini, Simone ,  Pecce, Valeria ,  Di Costanzo, Alessia ,  Polito, Luca ,  Ghadiri, Ameneh ,  Minicocci, Ilenia ,  Tambaro, Federica ,  Covino, Stella ,  Arca, Marcello ,  D’Erasmo, Laura

Abstract AI-Helper 아이콘AI-Helper

Background: ANGPTL3 stimulates lipolysis in adipocytes, but the underlying molecular mechanism is yet unknown. The C-terminal fibrinogen-like domain of ANGPTL3 (ANGPTL3-Fld) activates the AKT pathway in endothelial cells. Hence, we evaluated whether ANGPTL3-Fld stimulates lipolysis in adipocytes thr...

주제어

참고문헌 (27)

  1. 1. Bini S. D’erasmo L. Di Costanzo A. Minicocci I. Pecce V. Arca M. The Interplay between Angiopoietin-Like Proteins and Adipose Tissue: Another Piece of the Relationship between Adiposopathy and Cardiometabolic Diseases? Int. J. Mol. Sci. 2021 22 742 10.3390/ijms22020742 

  2. 2. Zhang R. Zhang K. An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues Prog. Lipid Res. 2021 85 101140 10.1016/j.plipres.2021.101140 34793860 

  3. 3. Koishi R. Ando Y. Ono M. Shimamura M. Yasumo H. Fujiwara T. Horikoshi H. Furukawa H. Angptl3 regulates lipid metabolism in mice Nat. Genet. 2002 30 151 157 10.1038/ng814 11788823 

  4. 4. Arca M. D’Erasmo L. Minicocci I. Familial combined hypolipidemia: Angiopoietin-like protein-3 deficiency Curr. Opin. Lipidol. 2020 31 41 48 10.1097/MOL.0000000000000668 32022755 

  5. 5. Robciuc M.R. Maranghi M. Lahikainen A. Rader D. Bensadoun A. Öörni K. Metso J. Minicocci I. Ciociola E. Ceci F. Angptl3 Deficiency Is Associated With Increased Insulin Sensitivity, Lipoprotein Lipase Activity, and Decreased Serum Free Fatty Acids Arter. Thromb. Vasc. Biol. 2013 33 1706 1713 10.1161/ATVBAHA.113.301397 23661675 

  6. 6. Ono M. Shimizugawa T. Shimamura M. Yoshida K. Noji-Sakikawa C. Ando Y. Koishi R. Furukawa H. Protein Region Important for Regulation of Lipid Metabolism in Angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo J. Biol. Chem. 2003 278 41804 41809 10.1074/jbc.M302861200 12909640 

  7. 7. Tikkanen E. Minicocci I. Hällfors J. Di Costanzo A. D’Erasmo L. Poggiogalle E. Donini L.M. Würtz P. Jauhiainen M. Olkkonen V.M. Metabolomic Signature of Angiopoietin-Like Protein 3 Deficiency in Fasting and Postprandial State Arter. Thromb. Vasc. Biol. 2019 39 665 674 10.1161/ATVBAHA.118.312021 

  8. 8. Minicocci I. Tikka A. Poggiogalle E. Metso J. Montali A. Ceci F. Labbadia G. Fontana M. Di Costanzo A. Maranghi M. Effects of angiopoietin-like protein 3 deficiency on postprandial lipid and lipoprotein metabolism J. Lipid Res. 2016 57 1097 1107 10.1194/jlr.P066183 27040449 

  9. 9. Camenisch G. Pisabarro M.T. Sherman D. Kowalski J. Nagel M. Hass P. Xie M.-H. Gurney A. Bodary S. Liang X.H. ANGPTL3 Stimulates Endothelial Cell Adhesion and Migration via Integrin αvβ3 and Induces Blood Vessel Formation in Vivo J. Biol. Chem. 2002 277 17281 17290 10.1074/jbc.M109768200 11877390 

  10. 10. Maik-Rachline G. Wortzel I. Seger R. Alternative Splicing of MAPKs in the Regulation of Signaling Specificity Cells 2021 10 3466 10.3390/cells10123466 34943973 

  11. 11. Wei Z. Liu H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells Cell Res. 2002 12 9 18 10.1038/sj.cr.7290105 11942415 

  12. 12. Watt M.J. Holmes A.G. Pinnamaneni S.K. Garnham A.P. Steinberg G. Kemp B. Febbraio M.A. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue Am. J. Physiol. Metab. 2006 290 E500 E508 10.1152/ajpendo.00361.2005 16188906 

  13. 13. Vemurafenib Datasheet [Internet] Available online: https://www.selleckchem.com/products/PLX-4032 (accessed on 13 April 2022) 

  14. 14. Brasaemle D.L. Levin D.M. Adler-Wailes D.C. Londos C. The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2000 1483 251 262 10.1016/S1388-1981(99)00179-1 

  15. 15. Pecce V. Verrienti A. Abballe L. Carletti R. Grani G. Falcone R. Ramundo V. Durante C. Di Gioia C. Russo D. Loss of Function SETD2 Mutations in Poorly Differentiated Metastases from Two Hürthle Cell Carcinomas of the Thyroid Cancers 2020 12 1892 10.3390/cancers12071892 32674319 

  16. 16. Berndt S. Liebscher I. New Structural Perspectives in G Protein-Coupled Receptor-Mediated Src Family Kinase Activation Int. J. Mol. Sci. 2021 22 6489 10.3390/ijms22126489 34204297 

  17. 17. Valle-Mendiola A. Soto-Cruz I. Energy Metabolism in Cancer: The Roles of STAT3 and STAT5 in the Regulation of Metabolism-Related Genes Cancers 2020 12 124 10.3390/cancers12010124 

  18. 18. Cunningham R.P. Sheldon R.D. Rector R.S. The Emerging Role of Hepatocellular eNOS in Non-alcoholic Fatty Liver Disease Development Front. Physiol. 2020 11 767 10.3389/fphys.2020.00767 32719616 

  19. 19. Evseeva M.N. Balashova M.S. Kulebyakin K.Y. Rubtsov Y.P. Adipocyte Biology from the Perspective of In Vivo Research: Review of Key Transcription Factors Int. J. Mol. Sci. 2021 23 322 10.3390/ijms23010322 35008748 

  20. 20. Jin N. Matter W.F. Michael L.F. Qian Y. Gheyi T. Cano L. Perez C. Lafuente C. Broughton H.B. Espada A. The Angiopoietin-Like Protein 3 and 8 Complex Interacts with Lipoprotein Lipase and Induces LPL Cleavage ACS Chem. Biol. 2021 16 457 462 10.1021/acschembio.0c00954 33656326 

  21. 21. Chi X. Britt E.C. Shows H.W. Hjelmaas A.J. Shetty S.K. Cushing E.M. Li W. Dou A. Zhang R. Davies B.S. ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase Mol. Metab. 2017 6 1137 1149 10.1016/j.molmet.2017.06.014 29031715 

  22. 22. Tošić I. Frank D.A. STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications Neoplasia 2021 23 1167 1178 10.1016/j.neo.2021.10.003 34731785 

  23. 23. Inoue H. Ogawa W. Ozaki M. Haga S. Matsumoto M. Furukawa K. Hashimoto N. Kido Y. Mori T. Sakaue H. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo Nat. Med. 2004 10 168 174 10.1038/nm980 14716305 

  24. 24. Gao Z. Daquinag A.C. Su F. Snyder B. Kolonin M.G. PDGFRα / PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes Development 2018 145 dev155861 10.1242/dev.155861 29158445 

  25. 25. Onogi Y. Wada T. Kamiya C. Inata K. Matsuzawa T. Inaba Y. Kimura K. Inoue H. Yamamoto S. Ishii Y. PDGFRβ Regulates Adipose Tissue Expansion and Glucose Metabolism via Vascular Remodeling in Diet-Induced Obesity Diabetes 2017 66 1008 1021 10.2337/db16-0881 28122789 

  26. 26. Banfi S. Gusarova V. Gromada J. Cohen J.C. Hobbs H.H. Increased thermogenesis by a noncanonical pathway in ANGPTL3/8-deficient mice Proc. Natl. Acad. Sci. USA 2018 115 E1249 1258 10.1073/pnas.1717420115 29358393 

  27. 27. Dewey F.E. Gusarova V. Dunbar R. O’dushlaine C. Schurmann C. Gottesman O. McCarthy S. Van Hout C.V. Bruse S. Dansky H.M. Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease N. Engl. J. Med. 2017 377 211 221 10.1056/NEJMoa1612790 28538136 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로