$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Deciphering the Origins of Transient Seismic Moment Accelerations by Realistic Dynamic Rupture Simulations

Bulletin of the Seismological Society of America, v.112 no.3, 2022년, pp.1240 - 1251  

Renou, Julien (Université) ,  Vallée, Martin (de Paris, Institut de physique du globe de Paris, CNRS, Paris, France) ,  Aochi, Hideo (Université)

Abstract AI-Helper 아이콘AI-Helper

ABSTRACTProperties of earthquake source physics can be inferred from the comparison between seismic observations and results of dynamic rupture models. Although simple self-similar rupture models naturally explain the space and time observations at the scale of the whole earthquake, several observat...

참고문헌 (51)

  1. Geophys. J. Int. Abercrombie 2 406 2005 10.1111/j.1365-246X.2005.02579.x Can observations of earthquake scaling constrain slip weakening? 

  2. J. Geophys. Res. Aki 4 1217 1967 10.1029/JZ072i004p01217 Scaling law of seismic spectrum 

  3. J. Geophys. Res. Andrews B7 3867 1980 10.1029/JB085iB07p03867 A stochastic fault model: 1. Static case 

  4. J. Geophys. Res. Andrews B11 10,821 1981 10.1029/JB086iB11p10821 A stochastic fault model: 2. Time-dependent case 

  5. Geophys. Res. Lett. Aochi 2 2004 10.1029/2003GL018708 Numerical study on multi-scaling earthquake rupture 

  6. Pure Appl. Geophys. Aochi 5 1931 2020 10.1007/s00024-019-02199-z Imaging of seismogenic asperities of the 2016 ml 6.0 amatrice, Central Italy, earthquake through dynamic rupture simulations 

  7. Pure Appl. Geophys. Aochi 11/12 2003 2000 10.1007/PL00001072 Spontaneous rupture propagation on a non-planar fault in 3-D elastic medium 

  8. Geophys. Res. Lett. Aso 24 14,347 2019 10.1029/2019GL085010 Ordinary and slow earthquakes reproduced in a simple continuum system with stochastic temporal stress fluctuations 

  9. J. Geophys. Res. Bilek B9 2004 10.1029/2004JB003039 Radiated seismic energy and earthquake source duration variations from teleseismic source time functions for shallow subduction zone thrust earthquakes 

  10. Earth Planet. Sci. Lett. Bizzarri 196 2012 10.1016/j.epsl.2011.11.023 Rupture speed and slip velocity: What can we learn from simulated earthquakes? 

  11. J. Geophys. Res. Chounet 7 5831 2018 10.1029/2018JB015932 Global and interregion characterization of subduction interface earthquakes derived from source time functions properties 

  12. Tectonophysics Chounet 148 2018 10.1016/j.tecto.2017.11.005 Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity 

  13. Int. Geophys. Cocco 163 2009 10.1016/S0074-6142(08)00007-7 Scaling of slip weakening distance with final slip during dynamic earthquake rupture 

  14. Seismol. Res. Lett. Courboulex 4 912 2016 10.1785/0220150283 Stress-drop variability of shallow earthquakes extracted from a global database of source time functions 

  15. Bull. Seismol. Soc. Am. Dahlen 4 1159 1974 10.1785/BSSA0640041159 On the ratio of P-wave to S-wave corner frequencies for shallow earthquake sources 

  16. Geophys. Res. Lett. Danré 13 7352 2019 10.1029/2019GL083093 Earthquakes within earthquakes: Patterns in rupture complexity 

  17. Geophys. Res. Lett. Denolle 5 2458 2019 10.1029/2018GL080687 Energetic onset of earthquakes 

  18. J. Mech. Phys. Solids Eshelby 3 177 1969 10.1016/0022-5096(69)90032-5 The elastic field of a crack extending non-uniformly under general anti-plane loading 

  19. J. Elast. Freund 4 341 1972 10.1007/BF00045718 Energy flux into the tip of an extending crack in an elastic solid 

  20. Bull. Seismol. Soc. Am. Freymueller 3 646 1994 10.1785/BSSA0840030646 The co-seismic slip distribution of the landers earthquake 

  21. Bull. Seismol. Soc. Am. Fukuyama 1 1 1998 10.1785/BSSA0880010001 Rupture dynamics of a planar fault in a 3d elastic medium: Rate-and slip-weakening friction 

  22. J. Geophys. Res. Gallovič 7 6970 2019 10.1029/2019JB017512 Bayesian dynamic finite-fault inversion: 2. Application to the 2016 Mw 6.2 Amatrice, Italy, earthquake 

  23. Geophys. Res. Lett. Gusman 4 1053 2015 10.1002/2014GL062604 Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data 

  24. J. Geophys. Res. Hanks B5 2235 1979 10.1029/JB084iB05p02235 b values and ω- γ seismic source models: Implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion 

  25. J. Geophys. Res. Houston B6 11,137 2001 10.1029/2000JB900468 Influence of depth, focal mechanism, and tectonic setting on the shape and duration of earthquake source time functions 

  26. J. Geophys. Res. Ida 20 3796 1972 10.1029/JB077i020p03796 Cohesive force across the tip of a longitudinal-shear crack and griffith’s specific surface energy 

  27. Nature Ide 7772 112 2019 10.1038/s41586-019-1508-5 Frequent observations of identical onsets of large and small earthquakes 

  28. J. Geophys. Res. Ide B11 2005 10.1029/2004JB003591 Earthquakes as multiscale dynamic ruptures with heterogeneous fracture surface energy 

  29. Geophys. J. Int. Kaneko 2 1002 2014 10.1093/gji/ggu030 Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture 

  30. J. Appl. Math. Mech. Kostrov 5 1077 1964 10.1016/0021-8928(64)90010-3 Selfsimilar problems of propagation of shear cracks 

  31. J. Appl. Math. Mech. Kostrov 6 1241 1966 10.1016/0021-8928(66)90087-6 Unsteady propagation of longitudinal shear cracks 

  32. Geophys. J. Int. Lancieri 1 469 2012 10.1111/j.1365-246X.2011.05327.x Spectral scaling of the aftershocks of the Tocopilla 2007 earthquake in northern Chile 

  33. Bull. Seismol. Soc. Am. Madariaga 3 639 1976 10.1785/BSSA0660030639 Dynamics of an expanding circular fault 

  34. Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations Mai 95 2018 10.1007/978-3-319-72709-7_7 Accounting for fault roughness in pseudo-dynamic ground-motion simulations 

  35. Geophys. Res. Lett. Meier 15 7991 2016 10.1002/2016GL070081 Evidence for universal earthquake rupture initiation behavior 

  36. Earth Planet. Sci. Lett. Meng 164 2018 10.1016/j.epsl.2018.04.057 Double pincer movement: Encircling rupture splitting during the 2015 Mw 8.3 illapel earthquake 

  37. Bull. Seismol. Soc. Am. Nielsen 6 2375 2003 10.1785/0120020090 On the self-healing fracture mode 

  38. J. Seismol. Nielsen 4 1187 2016 10.1007/s10950-016-9560-1 G: Fracture energy, friction and dissipation in earthquakes 

  39. Nat. Commun. Okuda 1 1 2018 Hierarchical rupture growth evidenced by the initial seismic waveforms 

  40. Science Olsen 5339 834 1997 10.1126/science.278.5339.834 Three-dimensional dynamic simulation of the 1992 Landers earthquake 

  41. J. Geophys. Res. Renou 8 8942 2019 10.1029/2019JB018045 How does seismic rupture accelerate? Observational insights from earthquake source time functions 

  42. J. Geophys. Res. Ripperger B4 2007 10.1029/2006JB004515 Earthquake source characteristics from dynamic rupture with constrained stochastic fault stress 

  43. J. Phys. Earth Sato 4 415 1973 10.4294/jpe1952.21.415 Body wave spectra from propagating shear cracks 

  44. J. Geophys. Res. Schmedes B3 2010 10.1029/2009JB006689 Correlation of earthquake source parameters inferred from dynamic rupture simulations 

  45. Seismol. Res. Lett. Tanioka 3 386 1997 10.1785/gssrl.68.3.386 Source time functions 

  46. Nat. Commun. Ulrich 1 1 2019 Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults 

  47. Phys. Earth Planet. In. Vallée 149 2016 10.1016/j.pepi.2016.05.012 A new database of source time functions (stfs) extracted from the scardec method 

  48. Geophys. J. Int. Vallée 1 338 2011 10.1111/j.1365-246X.2010.04836.x Scardec: A new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution 

  49. J. Geophys. Res. Wollherr 7 6666 2019 10.1029/2018JB016355 Landers 1992 “reloaded”: Integrative dynamic earthquake rupture modeling 

  50. Geophys. Res. Lett. Yagi 12 4201 2014 10.1002/2014GL060274 Rupture process of the 2014 Iquique Chile earthquake in relation with the foreshock activity 

  51. Seismol. Res. Lett. Yin 4 2343 2021 10.1785/0220200403 Source time function clustering reveals patterns in earthquake dynamics 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로