$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Approximate Stochastic Self-Similarity of Envelopes of High-Frequency Teleseismic P-Waves from Large Earthquakes

Pure and applied geophysics, v.167 no.11, 2010년, pp.1343 - 1363  

Gusev, Alexander A.

Abstract AI-Helper 아이콘AI-Helper

AbstractA wavetrain of high-frequency (HF) P waves from a large earthquake, when recorded at a distant station, looks like a segment of modulated noise, with its duration close to the duration of rupture. These wavetrains, with their bursts and fadings, look much more intermittent than a segment of ...

참고문헌 (33)

  1. Aki, K. (1967), Scaling law of seismic spectrum, J. Geophys. Res. 72, 1217-1231. 

  2. Andrews, D. J. (1978), Coupling of energy between tectonic processes and earthquakes, J. Geophys. Res. 83, 2259-2264. 

  3. Andrews, D. J. (1980), A stochastic fault model. 1. Static Case. J. Geophys. Res. 78, 3867-3877. 

  4. Andrews, D. J. (1981), A stochastic fault model. 2. Time-dependent case, J. Geophys. Res. 86, 10821-10834. 

  5. Antolik, M., Kaverina, A., and Dreger, D. (2000), Compound rupture of the great 1998 Antarctic Plate earthquake, J. Geophys. Res. 105, 23825-23838 

  6. Blandford, R. R. (1975), A source theory for complex earthquakes, Bull. Seismol. Soc. Am. 65, 1385-1405. 

  7. Boore, D. M. (1983), Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, Bull. Seismol. Soc. Am. 73, 1865-1894. 

  8. Brune, J. N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 4997-5009. 

  9. Frankel, A. (2004), Rupture process of the M 7.9 Denali Fault, Alaska, Earthquake: subevents, directivity, and scaling of high-frequency ground motions, Bull. Seismol. Soc. Am. 94, S234-S255 

  10. Gusev, A. A. (1983), Descriptive statistical model of earthquake source radiation and its application to an estimation of short-period strong motion, Geophys. J. R. Astron. Soc. 74, 787-808. 

  11. Gusev, A. A. and Pavlov, V. M. (1991), Deconvolution of squared velocitywaveform as applied to study of non-coherent short-period radiator in earthquake source, Pure Appl. Geophys. 136, 235-244. 

  12. Gusev, A. A. and Pavlov, V. M. (1998), Preliminary determination of parameters of the high-frequency source for the Dec 05, 1997 M w = 7.9 Kronotsky earthquake, XXVI Gen. Assembly, Eur. Seismol. Comission, Papers, Tel-Aviv, Israel, 73-77. 

  13. 10.1111/j.1365-246X.2007.03368.x Gusev A. A., Guseva, E. M., and Panza, G. F. (2007), Size and duration of the high-frequency radiator in the source of the 2004 December 26 Sumatra earthquake, Geophys. J. Int. 170, 1119-1128. doi: 10.1111/j.1365-246X.2007.03368.x . 

  14. Gusev A. A. and Guseva, E. M. Preliminary estimation of parameters high-frequency source of 2006.04.2006 Olyutorsky earthquake (M w = 7.6, Koryuakia). In: Olyutorskoye zemletryasenie 20(21) aprelya 2006 g, Koryakskoye nagorye. Pervye rezultaty issledovaniy (ed Chebrov, V. N.) (GS PAN, Petropavlovsk-Kamchatskiy, 231-240, 2007). 

  15. 10.1029/JB084iB05p02235 Hanks, T. C. (1979), b Values and ω-γ seismic source models: implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion, J. Geophys. Res. 84, 2235-2242. 

  16. Hanks, T. C. and McGuire R. K. (1981), The character of high-frequency strong ground motion, Bull. Seism. Soc. Am. 71 , 2071-2095. 

  17. 10.1186/BF03353099 Hara, T. (2007), Measurement of the duration of high-frequency energy radiation and its application to determination of the magnitudes of large shallow earthquakes, Earth Planets Space 59, 227-231. 

  18. Haskell, N. A. (1966), Total energy and energy spectral density of elastic wave radiation from propagating faults. II. A stochastic fault model, Bull. Seism. Soc. Am. 56, 125-140. 

  19. Heaton, T. H. (1990), Evidence for and implications of self-healing pulses of slip in earthquake rupture, Phys. Earth Planet. Inter. 64, 1-20. 

  20. Houston, H. and Kanamori, H. (1986), Source spectra of great earthquakes: teleseismic constraints on rupture process and strong motion, Bull. Seism. Soc. Am., 76, 19-42. 

  21. Izutani, Y. and Hirasawa, T. (1987), Use of strong motion duration for rapid evaluation of fault parameters, J. Phys. Earth 35, 171-190. 

  22. Kopnichev, Yu. F. (1977), A method for determination of the structure of radiation of a strong earthquake from envelope shape of P wave, Dokl. Acad. Sci. USSR 234,794-797 (in Russian) 

  23. 10.1029/2005GL022437 Lomax, A., (2005), Rapid estimation of rupture extent for large earthquakes: application to the 2004, M9 Sumatra-Andaman mega-thrust, Geophys. Res. Lett. 32, L10314. doi: 10.1029/2005GL022437 . 

  24. Mandelbrot, B. B. The Fractal Geometry of Nature (W.H. Freeman, New York 1982). 

  25. 10.1007/978-1-4615-0103-9_8 Marsan, D. and Bean, C. J., Multifractal modeling and analyses of crustal heterogeneity. In Heterogeneity in the Crust and Upper Mantle: Nature, Scaling, and Seismic Properties (eds. Goff, J. A. and Holliger, K.) (Kluwer Academic/Plenum Publishers, 207-236, 2003). 

  26. 10.1038/434582a Ni, S., Kanamori, H., and Helmberger, D. (2005), Energy radiation from the Sumatra earthquake, Nature 434, 582 

  27. Papageorgiou, A. S. and Aki, K. (1983), A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of the strong ground motion. I. Description of the model, Bull. Seism. Soc. Am. 73, 693-722. 

  28. Raoof, M., Hermann, R. B., and Malagnini, L. (1999), Attenuation and excitation of three-component ground motion in Southern California, Bull. Seism. Soc. Am. 89, 888-902. 

  29. Rykunov, L. N., Smirnov, V. B., Starovoyt, Yu. O., and Chubarova, O. S. (1987), Temporal self-similarity of seismic emission, Dokl. Acad. Sci. USSR 297, 1337-1341 (in Russian) 

  30. Trifunac, M. D. and Brady, A. G. (1975), A study on the duration of strong earthquake ground motion, Bull. Seism. Soc. Am. 65, 581-626. 

  31. 10.1023/A:1008007328969 Urquizu, M. and Correig, A. M. (1998), Analysis of seismic dynamical systems, J. Seismol. 2, 159-171 

  32. 10.1785/0120000929 Venkataraman, A., Rivera, L., and Kanamori, H. (2002), Radiated energy from the 16 October 1999 Set Hector Mine earthquake: regional and teleseismic estimates. Bull. Seismol. Soc. Am. 92, 1256-1265. doi: 10.1785/0120000929 

  33. 10.1186/BF03353057 Yagi, Y. (2004), Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data. Earth Planets Space 56, 311-316 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로