$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

High-Efficiency p-n Homojunction Perovskite and CIGS Tandem Solar Cell 원문보기

Crystals, v.12 no.5, 2022년, pp.703 -   

Hedayati, Maryam ,  Olyaee, Saeed

Abstract AI-Helper 아이콘AI-Helper

Efficiency has been known to be one of the most important factors in a solar cell. This article presents the results of a simulation performed on a perovskite/CIGS dual-junction solar cell. In this report, first, a top solar cell consisting of a perovskite absorber layer is simulated using the pn-ju...

참고문헌 (45)

  1. Kojima, Akihiro, Teshima, Kenjiro, Shirai, Yasuo, Miyasaka, Tsutomu. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, vol.131, no.17, 6050-6051.

  2. Trinh, Xuan-Long, Kim, Hyun-Chul. Fully solution-processed perovskite solar cells fabricated by lamination process with silver nanoparticle film as top electrode. Energy Reports, vol.6, 1297-1303.

  3. Yousaf, S. Amber, Imran, M., Ikram, M., Ali, S.. The critical role of metal oxide electron transport layer for perovskite solar cell. Applied nanoscience, vol.8, no.6, 1515-1522.

  4. Green, Martin A., Ho-Baillie, Anita, Snaith, Henry J.. The emergence of perovskite solar cells. Nature photonics, vol.8, no.7, 506-514.

  5. Yang, Zhenhai, Shang, Aixue, Qin, Linling, Zhan, Yaohui, Zhang, Cheng, Gao, Pingqi, Ye, Jichun, Li, Xiaofeng. Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres. Optics letters, vol.41, no.7, 1329-.

  6. Xu, Z., Qiao, H., Huangfu, H., Li, X., Guo, J., Wang, H.. Optical absorption of several nanostructures arrays for silicon solar cells. Optics communications, vol.356, 526-529.

  7. Bou Inductive Loop in the Impedance Response of Perovskite Solar Cells Explained by Surface Polarization Model J. Phys. Chem. Lett. 2018 8 1402 

  8. Zhang, Yong, Zhai, Guangmei, Gao, Lingwei, Chen, Qing, Ren, Jintao, Yu, Jun, Yang, Yongzhen, Hao, Yuying, Liu, Xuguang, Xu, Bingshe, Wu, Yucheng. Improving performance of perovskite solar cells based on ZnO nanorods via rod-length control and sulfidation treatment. Materials science in semiconductor processing, vol.117, 105205-.

  9. Ghahremanirad, Elnaz, Olyaee, Saeed, Nejand, Bahram Abdollahi, Nazari, Pariya, Ahmadi, Vahid, Abedi, Kambiz. Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network. Solar energy, vol.169, 498-504.

  10. Lin, Lingyan, Jiang, Linqin, Li, Ping, Fan, Baodian, Qiu, Yu, Yan, Fengpo. Simulation of optimum band structure of HTM-free perovskite solar cells based on ZnO electron transporting layer. Materials science in semiconductor processing, vol.90, 1-6.

  11. Ghahremanirad, Elnaz, Olyaee, Saeed, Nejand, Bahram A., Ahmadi, Vahid, Abedi, Kambiz. Hexagonal Array of Mesoscopic HTM‐Based Perovskite Solar Cell with Embedded Plasmonic Nanoparticles. Physica status solidi. PSS. B, Basic solid state physics, vol.255, no.3, 1700291-.

  12. Li, Guoxin, Wang, Yukun, Huang, Lixiang, Zeng, Ruosheng, Sun, Wenhong. Inhibited Aggregation of Lithium Salt in Spiro-OMeTAD for Perovskite Solar Cells. Crystals, vol.12, no.2, 290-.

  13. Ruth, Anthony, Holland, Michael, Rockett, Angus, Sanehira, Erin, Irwin, Michael D., Steirer, K. Xerxes. Charge Compensation by Iodine Covalent Bonding in Lead Iodide Perovskite Materials. Crystals, vol.12, no.1, 88-.

  14. Jianmin, Hu, Yiyong, Wu, Jingdong, Xiao, Dezhuang, Yang, Zhongwei, Zhang. Degradation behaviors of electrical properties of GaInP/GaAs/Ge solar cells under <200keV proton irradiation. Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, vol.92, no.12, 1652-1656.

  15. Takamoto, Tatsuya, Kaneiwa, Minoru, Imaizumi, Mitsuru, Yamaguchi, Masafumi. InGaP/GaAs-based multijunction solar cells. Progress in photovoltaics, vol.13, no.6, 495-511.

  16. Sengar, Brajendra S., Garg, Vivek, Kumar, Amitesh, Dwivedi, Praveen. Numerical Simulation: Design of High-Efficiency Planar p-n Homojunction Perovskite Solar Cells. IEEE transactions on electron devices, vol.68, no.5, 2360-2364.

  17. Ghahremanirad, Elnaz, Olyaee, Saeed, Hedayati, Maryam. The Influence of Embedded Plasmonic Nanostructures on the Optical Absorption of Perovskite Solar Cells. Photonics, vol.6, no.2, 37-.

  18. Fang, Zhimin, Zeng, Qiang, Zuo, Chuantian, Zhang, Lixiu, Xiao, Hanrui, Cheng, Ming, Hao, Feng, Bao, Qinye, Zhang, Lixue, Yuan, Yongbo, Wu, Wu-Qiang, Zhao, Dewei, Cheng, Yuanhang, Tan, Hairen, Xiao, Zuo, Yang, Shangfeng, Liu, Fangyang, Jin, Zhiwen, Yan, Jinding, Ding, Liming. Perovskite-based tandem solar cells. Science bulletin = 科學通報 (英文版), vol.66, no.6, 621-636.

  19. Liu, Ling, Xiao, Zuo, Zuo, Chuantian, Ding, Liming. Inorganic perovskite/organic tandem solar cells with efficiency over 20%. Journal of semiconductors, vol.42, no.2, 020501-.

  20. Hedayati, Maryam, Olyaee, Saeed, Ghorashi, Seyed Mohamad Bagher. The Effect of Adsorbent Layer Thickness and Gallium Concentration on the Efficiency of a Dual-Junction Copper Indium Gallium Diselenide Solar Cell. Journal of electronic materials, vol.49, no.2, 1454-1461.

  21. Gharibzadeh, Saba, Hossain, Ihteaz M., Fassl, Paul, Nejand, Bahram Abdollahi, Abzieher, Tobias, Schultes, Moritz, Ahlswede, Erik, Jackson, Philip, Powalla, Michael, Schäfer, Sören, Rienäcker, Michael, Wietler, Tobias, Peibst, Robby, Lemmer, Uli, Richards, Bryce S., Paetzold, Ulrich W.. 2D/3D Heterostructure for Semitransparent Perovskite Solar Cells with Engineered Bandgap Enables Efficiencies Exceeding 25% in Four‐Terminal Tandems with Silicon and CIGS. Advanced functional materials, vol.30, no.19, 1909919-.

  22. Madan, Jaya, Shivani, Jaya, Pandey, Rahul, Sharma, Rajnish. Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Solar energy, vol.197, 212-221.

  23. Cui, Peng, Wei, Dong, Ji, Jun, Huang, Hao, Jia, Endong, Dou, Shangyi, Wang, Tianyue, Wang, Wenjing, Li, Meicheng. Planar p-n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nature energy, vol.4, no.2, 150-159.

  24. Wang, Qi, Shao, Yuchuan, Xie, Haipeng, Lyu, Lu, Liu, Xiaoliang, Gao, Yongli, Huang, Jinsong. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Applied physics letters, vol.105, no.16, 163508-.

  25. Sze Semiconductor Devices: Physics and Technology 2008 

  26. Sutherland, J.E., Hauser, J.R.. A computer analysis of heterojunction and graded composition solar cells. IEEE transactions on electron devices, vol.24, no.4, 363-372.

  27. Sze Physics of Semiconductor Devices 2006 

  28. Entner Modeling and Simulation of Negative Bias Temperature Instability 2007 

  29. Shockley, William, Queisser, Hans J.. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of applied physics, vol.32, no.3, 510-519.

  30. Lundstrom, M.S., Schuelke, R.J.. Numerical analysis of heterostructure semiconductor devices. IEEE transactions on electron devices, vol.30, no.9, 1151-1159.

  31. Elbar, M., Tobbeche, S., Merazga, A.. Effect of top-cell CGS thickness on the performance of CGS/CIGS tandem solar cell. Solar energy, vol.122, 104-112.

  32. Karimi, Elham, Ghorashi, Seyed Mohamad Bagher. Simulation of perovskite solar cell with P3HT hole-transporting materials. Journal of nanophotonics, vol.11, no.3, 032510-.

  33. Fotis Modeling and Simulation of a Dual-Junction CIGS Solar Cell using Silvaco ATLAS 2012 

  34. Hedayati, Maryam, Olyaee, Saeed. Proposal of CIGS dual-junction solar cell and investigation of different metal grids effect. Optical and quantum electronics, vol.52, no.7, 347-.

  35. Fu, Fan, Pisoni, Stefano, Weiss, Thomas P., Feurer, Thomas, Wäckerlin, Aneliia, Fuchs, Peter, Nishiwaki, Shiro, Zortea, Lukas, Tiwari, Ayodhya N., Buecheler, Stephan. Compositionally Graded Absorber for Efficient and Stable Near‐Infrared‐Transparent Perovskite Solar Cells. Advanced science, vol.5, no.3, 1700675-.

  36. Su, Ju, Yang, Hua, Xu, Yan, Tang, Yijun, Yi, Zao, Zheng, Fusheng, Zhao, Fei, Liu, Li, Wu, Pinghui, Li, Hailiang. Based on Ultrathin PEDOT:PSS/c-Ge Solar Cells Design and Their Photoelectric Performance. Coatings, vol.11, no.7, 748-.

  37. Bashiri Crystalline silicon solar cell engineering to improve fill factor, open circuit voltage, short circuit current and overall cell efficiency Modares J. Electr. Eng. 2015 14 6 

  38. Kim, Sangho, Dao, Vinh Ai, Shin, Chonghoon, Balaji, Nagarajan, Yi, Junsin. Influence of n-Doped μc-Si:H Back Surface Field Layer with Micro Growth in Crystalline-Amorphous Silicon Heterojunction Solar Cells. Journal of nanoscience and nanotechnology, vol.14, no.12, 9258-9262.

  39. Meroni, Simone M. P., Hooper, Katherine E. A., Dunlop, Tom, Baker, Jenny A., Worsley, David, Charbonneau, Cecile, Watson, Trystan M.. Scribing Method for Carbon Perovskite Solar Modules. Energies, vol.13, no.7, 1589-.

  40. Zhao, Dan, Huang, Jiang, Qin, Ruiheng, Yang, Genjie, Yu, Junsheng. Efficient Visible-Near‐Infrared Hybrid Perovskite:PbS Quantum Dot Photodetectors Fabricated Using an Antisolvent Additive Solution Process. Advanced optical materials, vol.6, no.23, 1800979-.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로