$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Biotechnological and Technical Challenges Related to Cultured Meat Production 원문보기

Applied sciences, v.12 no.13, 2022년, pp.6771 -   

Lanzoni, Davide ,  Bracco, Filippo ,  Cheli, Federica ,  Colosimo, Bianca Maria ,  Moscatelli, Davide ,  Baldi, Antonella ,  Rebucci, Raffaella ,  Giromini, Carlotta

Abstract AI-Helper 아이콘AI-Helper

The constant growth of the population has pushed researchers to find novel protein sources. A possible solution to this problem has been found in cellular agriculture, specifically in the production of cultured meat. In the following review, the key steps for the production of in vitro meat are iden...

참고문헌 (126)

  1. Röös, Elin, Bajželj, Bojana, Smith, Pete, Patel, Mikaela, Little, David, Garnett, Tara. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Global environmental change : human and policy dimensions, vol.47, 1-12.

  2. BELLET, C., RUSHTON, J.. World food security, globalisation and animal farming: unlocking dominant paradigms of animal health science : -EN- -FR- La sécurité alimentaire mondiale, la mondialisation et l’élevage : débloquer les paradigmes dominants des sciences de la santé animale -ES- Seguridad alimentaria mundial, mundialización y producción animal: desentrañar los paradigmas dominantes de la ciencia de la sanidad animal. Revue scientifique et technique, vol.38, no.2, 383-393.

  3. Rischer, Heiko, Szilvay, Géza R, Oksman-Caldentey, Kirsi-Marja. Cellular agriculture — industrial biotechnology for food and materials. Current opinion in biotechnology, vol.61, 128-134.

  4. Rubio, Natalie R., Xiang, Ning, Kaplan, David L.. Plant-based and cell-based approaches to meat production. Nature communications, vol.11, no.1, 6276-.

  5. Guerci, Matteo, Bava, Luciana, Zucali, Maddalena, Sandrucci, Anna, Penati, Chiara, Tamburini, Alberto. Effect of farming strategies on environmental impact of intensive dairy farms in Italy. The Journal of dairy research, vol.80, no.3, 300-308.

  6. News Article: Major Cuts of Green House Gas Emission from Livestock within Reach 2022 

  7. Chriki, Sghaier, Hocquette, Jean-François. The Myth of Cultured Meat: A Review. Frontiers in nutrition : FNUT, vol.7, 7-.

  8. Lynch, John, Pierrehumbert, Raymond. Climate Impacts of Cultured Meat and Beef Cattle. Frontiers in sustainable food systems, vol.3, 5-.

  9. Stehfest, Elke, Bouwman, Lex, van Vuuren, Detlef P., den Elzen, Michel G. J., Eickhout, Bas, Kabat, Pavel. Climate benefits of changing diet. Climatic change, vol.95, no.1, 83-102.

  10. Rizvi, Sarah, Pagnutti, Chris, Fraser, Evan, Bauch, Chris T., Anand, Madhur. Global land use implications of dietary trends. PloS one, vol.13, no.8, e0200781-.

  11. Eibl, Regine, Senn, Yannick, Gubser, Géraldine, Jossen, Valentin, van den Bos, Christian, Eibl, Dieter. Cellular Agriculture: Opportunities and Challenges. Annual review of food science and technology, vol.12, no.1, 51-73.

  12. Warner, R.D.. Review: Analysis of the process and drivers for cellular meat production. Animal : an international journal of animal bioscience, vol.13, no.12, 3041-3058.

  13. Djisalov, Mila, Knežić, Teodora, Podunavac, Ivana, Živojević, Kristina, Radonic, Vasa, Knežević, Nikola Ž., Bobrinetskiy, Ivan, Gadjanski, Ivana. Cultivating Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured Meat Production. Biology, vol.10, no.3, 204-.

  14. Reiss, Jacob, Robertson, Samantha, Suzuki, Masatoshi. Cell Sources for Cultivated Meat: Applications and Considerations throughout the Production Workflow. International journal of molecular sciences, vol.22, no.14, 7513-.

  15. Soice, Emily, Johnston, Jeremiah. Immortalizing Cells for Human Consumption. International journal of molecular sciences, vol.22, no.21, 11660-.

  16. Choi, Kwang‐Hwan, Yoon, Ji Won, Kim, Minsu, Lee, Hyun Jung, Jeong, Jinsol, Ryu, Minkyung, Jo, Cheorun, Lee, Chang‐Kyu. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Comprehensive reviews in food science and food safety, vol.20, no.1, 429-457.

  17. Moritz, Matilda S M, Verbruggen, Sanne E L, Post, Mark J. Alternatives for large-scale production of cultured beef: A review. Journal of integrative agriculture, vol.14, no.2, 208-216.

  18. Ong, Kimberly J., Johnston, Jeremiah, Datar, Isha, Sewalt, Vincent, Holmes, Dwayne, Shatkin, Jo Anne. Food safety considerations and research priorities for the cultured meat and seafood industry. Comprehensive reviews in food science and food safety, vol.20, no.6, 5421-5448.

  19. O'Brien, Fergal J.. Biomaterials & scaffolds for tissue engineering. Materials today, vol.14, no.3, 88-95.

  20. Seah, Jasmine Si Han, Singh, Satnam, Tan, Lay Poh, Choudhury, Deepak. Scaffolds for the manufacture of cultured meat. Critical reviews in biotechnology, vol.42, no.2, 311-323.

  21. Moroni, Lorenzo, Burdick, Jason A., Highley, Christopher, Lee, Sang Jin, Morimoto, Yuya, Takeuchi, Shoji, Yoo, James J.. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nature reviews. Materials, vol.3, no.5, 21-37.

  22. K. Handral, Harish, Hua Tay, Shi, Wan Chan, Weng, Choudhury, Deepak. 3D Printing of cultured meat products. Critical reviews in food science and nutrition, vol.62, no.1, 272-281.

  23. Derakhshanfar, Soroosh, Mbeleck, Rene, Xu, Kaige, Zhang, Xingying, Zhong, Wen, Xing, Malcolm. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioactive materials, vol.3, no.2, 144-156.

  24. Martin, Ivan, Wendt, David, Heberer, Michael. The role of bioreactors in tissue engineering. Trends in biotechnology, vol.22, no.2, 80-86.

  25. 10.1016/B978-0-08-101103-4.00010-7 

  26. Zidarič, Tanja, Milojević, Marko, Vajda, Jernej, Vihar, Boštjan, Maver, Uroš. Cultured Meat: Meat Industry Hand in Hand with Biomedical Production Methods. Food engineering reviews, vol.12, no.4, 498-519.

  27. Post, Mark J., Levenberg, Shulamit, Kaplan, David L., Genovese, Nicholas, Fu, Jianan, Bryant, Christopher J., Negowetti, Nicole, Verzijden, Karin, Moutsatsou, Panagiota. Scientific, sustainability and regulatory challenges of cultured meat. Nature food, vol.1, no.7, 403-415.

  28. Specht, Elizabeth A., Welch, David R., Rees Clayton, Erin M., Lagally, Christie D.. Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry. Biochemical engineering journal, vol.132, 161-168.

  29. McKee, Christina, Chaudhry, G. Rasul. Advances and challenges in stem cell culture. Colloids and surfaces. B, Biointerfaces, vol.159, 62-77.

  30. Nienow, A.W., Rafiq, Q.A., Coopman, K., Hewitt, C.J.. A potentially scalable method for the harvesting of hMSCs from microcarriers. Biochemical engineering journal, vol.85, 79-88.

  31. Melzener, Lea, Verzijden, Karin E, Buijs, A Jasmin, Post, Mark J, Flack, Joshua E. Cultured beef: from small biopsy to substantial quantity. Journal of the science of food and agriculture, vol.101, no.1, 7-14.

  32. 10.3181/00379727-188-42704 

  33. Vestergaard, M, Oksbjerg, N, Henckel, P. Influence of feeding intensity, grazing and finishing feeding on muscle fibre characteristics and meat colour of semitendinosus, longissimus dorsi and supraspinatus muscles of young bulls. Meat science, vol.54, no.2, 177-185.

  34. 10.14573/altex.2010.1.53 

  35. Subbiahanadar Chelladurai, Karthikeyan, Selvan Christyraj, Jackson Durairaj, Rajagopalan, Kamarajan, Yesudhason, Beryl Vedha, Venkatachalam, Saravanakumar, Mohan, Manikandan, Chellathurai Vasantha, Niranjan, Selvan Christyraj, Johnson Retnaraj Samuel. Alternative to FBS in animal cell culture - An overview and future perspective. Heliyon, vol.7, no.8, e07686-.

  36. Jochems, Carlo E. A., van der Valk, Jan B.F., Stafleu, Frans R., Baumans, Vera. The Use of Fetal Bovine Serum: Ethical or Scientific Problem?. Alternatives to laboratory animals : ATLA, vol.30, no.2, 219-227.

  37. 10.14573/altex.2003.4.257 

  38. Kolkmann, A. M., Post, M. J., Rutjens, M. A. M., van Essen, A. L. M., Moutsatsou, P.. Serum-free media for the growth of primary bovine myoblasts. Cytotechnology, vol.72, no.1, 111-120.

  39. 10.3181/00379727-149-38804 

  40. Anderson, Ian. Cell culture: Fetal calf serum drought hits cell culture laboratories. Nature, vol.285, no.5760, 63-63.

  41. Hocquette, J.F.. Is in vitro meat the solution for the future?. Meat science, vol.120, 167-176.

  42. Balasubramanian, Balamuralikrishnan, Liu, Wenchao, Pushparaj, Karthika, Park, Sungkwon. The Epic of In Vitro Meat Production—A Fiction into Reality. Foods, vol.10, no.6, 1395-.

  43. Rubio, Natalie R., Fish, Kyle D., Trimmer, Barry A., Kaplan, David L.. In Vitro Insect Muscle for Tissue Engineering Applications. ACS biomaterials science & engineering, vol.5, no.2, 1071-1082.

  44. Calder Conference on the future of animal products in the human diet: Health and environmental concerns Plenary Lecture 3 n-3 PUFA and health: Fact, fiction and the future Very long-chain n-3 fatty acids and human health: Fact, fiction and the future Proc. Nutr. Soc. 2019 7 52 

  45. Paranjape Goat serum: An alternative to fetal bovine serum in biomedical research Indian J. Exp. Biol. 2004 42 26 

  46. Guiotto, M., Raffoul, W., Hart, A. M., Riehle, M. O., di Summa, P. G.. Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: a systematic review. Journal of translational medicine, vol.18, no.1, 351-.

  47. Ho, Yin Ying, Lu, Hao Kim, Lim, Zhi Feng Sherman, Lim, Hao Wei, Ho, Ying Swan, Ng, Say Kong. Applications and analysis of hydrolysates in animal cell culture. Bioresources and bioprocessing, vol.8, 93-.

  48. 10.1290/1543-706X(2003)039<0291:FOAPCC>2.0.CO;2 

  49. Spearman, Maureen, Lodewyks, Carly, Richmond, Meika, Butler, Michael. The bioactivity and fractionation of peptide hydrolysates in cultures of CHO cells. Biotechnology progress, vol.30, no.3, 584-593.

  50. Sung, Y. H., Lim, S. W., Chung, J. Y., Lee, G. M.. Yeast hydrolysate as a low-cost additive to serum-free medium for the production of human thrombopoietin in suspension cultures of Chinese hamster ovary cells. Applied microbiology and biotechnology, vol.63, no.5, 527-536.

  51. Mols, J., Peeters-Joris, C., Agathos, S.N., Schneider, Y.-J.. Origin of rice protein hydrolysates added to protein-free media alters secretion and extracellular proteolysis of recombinant interferon-&ggr; as well as CHO-320 cell growth. Biotechnology letters. : a monthly journal for the rapid communication of results and developments in all aspects of biotechnology, vol.26, no.13, 1043-1046.

  52. Wang, Li, Zeng, Benhua, Zhang, Xiaojing, Liao, Zhenlin, Gu, Lihui, Liu, Zhiwei, Zhong, Qingping, Wei, Hong, Fang, Xiang. The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice. Food & function, vol.7, no.12, 4956-4966.

  53. Davami, Fatemeh, Eghbalpour, Farnaz, Nematollahi, Leila, Barkhordari, Farzaneh, Mahboudi, Fereidoun. Effects of Peptone Supplementation in Different Culture Media on Growth, Metabolic Pathway and Productivity of CHO DG44 Cells; a New Insight into Amino Acid Profiles. Iranian biomedical journal, vol.19, no.4, 194-205.

  54. Ho, S.C.L., Nian, R., Woen, S., Chng, J., Zhang, P., Yang, Y.. Impact of hydrolysates on monoclonal antibody productivity, purification and quality in Chinese hamster ovary cells. Journal of bioscience and bioengineering, vol.122, no.4, 499-506.

  55. Jeong, Younsik, Choi, Woon-Yong, Park, Areumi, Lee, Yeon-Ji, Lee, Youngdeuk, Park, Gun-Hoo, Lee, Su-Jin, Lee, Won-Kyu, Ryu, Yong-Kyun, Kang, Do-Hyung. Marine cyanobacterium Spirulina maxima as an alternate to the animal cell culture medium supplement. Scientific reports, vol.11, no.1, 4906-.

  56. Ng, Jian Yao, Chua, Mei Ling, Zhang, Chi, Hong, Shiqi, Kumar, Yogesh, Gokhale, Rajeev, Ee, Pui Lai Rachel. Chlorella vulgaris Extract as a Serum Replacement That Enhances Mammalian Cell Growth and Protein Expression. Frontiers in bioengineering and biotechnology, vol.8, 564667-.

  57. Chabanon Influence of Rapeseed protein Hydrolysys Conditions on Animal Cell Growth in Serum-free Media Supplemented with Hydrolysates Cell Technology for Cell Products 2007 667 

  58. Zhang, Chuang, Li, Haichao, Li, Chen, Li, Zhengqiang. Fe-Loaded MOF-545(Fe): Peroxidase-Like Activity for Dye Degradation Dyes and High Adsorption for the Removal of Dyes from Wastewater. Molecules a journal of synthetic chemistry and natural product chemistry, vol.25, no.1, 168-.

  59. Paradkar Bovine whey protein and other biological fluids as alternative to fetal bovine serum in supplementing cell culture media Indian J. Exp. Biol. 2019 57 123 

  60. Suryawanshi, Rasika, Kanoujia, Jovita, Parashar, Poonam, Saraf, Shubhini. A.. Sericin: A Versatile Protein Biopolymer with Therapeutic Significance. Current pharmaceutical design, vol.26, no.42, 5414-5429.

  61. Thongsook, Tipawan, Tiyaboonchai, Waree. Inhibitory effect of sericin on polyphenol oxidase and its application as edible coating. International journal of food science & technology, vol.46, no.10, 2052-2061.

  62. Veskoukis, Aristidis S., Kerasioti, Efthalia, Skaperda, Zoi, Papapostolou, Porfirios Apostolos, Nepka, Charitini, Spandidos, Demetrios A., Asprodini, Eftihia, Taitzoglou, Ioannis, Kouretas, Demetrios. Whey protein boosts the antioxidant profile of rats by enhancing the activities of crucial antioxidant enzymes in a tissue-specific manner. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, vol.142, 111508-.

  63. Smithers, G.W.. Whey and whey proteins-From 'gutter-to-gold'. International dairy journal, vol.18, no.7, 695-704.

  64. Kerasioti, E., Kiskini, A., Veskoukis, A., Jamurtas, A., Tsitsimpikou, C., Tsatsakis, A.M., Koutedakis, Y., Stagos, D., Kouretas, D., Karathanos, V.. Effect of a special carbohydrate-protein cake on oxidative stress markers after exhaustive cycling in humans. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, vol.50, no.8, 2805-2810.

  65. Stephens, Neil, Di Silvio, Lucy, Dunsford, Illtud, Ellis, Marianne, Glencross, Abigail, Sexton, Alexandra. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends in food science & technology, vol.78, 155-166.

  66. Post, Mark J. Cultured beef: medical technology to produce food. Journal of the science of food and agriculture, vol.94, no.6, 1039-1041.

  67. Post, Mark J.. An alternative animal protein source: cultured beef. Annals of the New York Academy of Sciences, vol.1328, no.1, 29-33.

  68. Mikos, A.G., Thorsen, A.J., Czerwonka, L.A., Bao, Y., Langer, R., Winslow, D.N., Vacanti, J.P.. Preparation and characterization of poly(l-lactic acid) foams. Polymer, vol.35, no.5, 1068-1077.

  69. Prasad, A., Sankar, M., Katiyar, V.. State of Art on Solvent Casting Particulate Leaching Method for Orthopedic ScaffoldsFabrication. Materials today: proceedings, vol.4, no.2, 898-907.

  70. Mikos, A.G., Sarakinos, G., Leite, S.M., Vacant, J.P., Langer, R.. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials, vol.14, no.5, 323-330.

  71. Martínez-Pérez Scaffolds for tissue engineering via thermally induced phase separation Advances in Regenerative Medicine 2011 275 

  72. Akbarzadeh, Rosa, Yousefi, Azizeh‐Mitra. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. Journal of biomedical materials research. Part B, Applied biomaterials, vol.102, no.6, 1304-1315.

  73. Mooney, David J., Baldwin, Daniel F., Suh, Nam P., Vacanti, Joseph P., Langer, Robert. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials, vol.17, no.14, 1417-1422.

  74. Costantini Gas foaming technologies for 3D scaffold engineering Functional 3D Tissue Engineering Scaffolds 2018 127 

  75. Dehghani, F., Annabi, N.. Engineering porous scaffolds using gas-based techniques. Current opinion in biotechnology, vol.22, no.5, 661-666.

  76. Gibson Cellular Solids: Structure and Properties 1999 

  77. Pilliar, R.M, Filiaggi, M.J, Wells, J.D, Grynpas, M.D, Kandel, R.A. Porous calcium polyphosphate scaffolds for bone substitute applications — in vitro characterization. Biomaterials, vol.22, no.9, 963-972.

  78. Braghirolli, D.I., Steffens, D., Pranke, P.. Electrospinning for regenerative medicine: a review of the main topics. Drug discovery today, vol.19, no.6, 743-753.

  79. Hobson, Christopher M., Amoroso, Nicholas J., Amini, Rouzbeh, Ungchusri, Ethan, Hong, Yi, D'Amore, Antonio, Sacks, Michael S., Wagner, William R.. Fabrication of elastomeric scaffolds with curvilinear fibrous structures for heart valve leaflet engineering. Journal of biomedical materials research. Part A, vol.103, no.9, 3101-3106.

  80. Sola, Antonella, Bertacchini, Jessika, D'Avella, Daniele, Anselmi, Laura, Maraldi, Tullia, Marmiroli, Sandra, Messori, Massimo. Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Materials science & engineering. C, Materials for biological applications, vol.96, 153-165.

  81. Hartgerink, Jeffrey D., Beniash, Elia, Stupp, Samuel I.. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proceedings of the National Academy of Sciences of the United States of America, vol.99, no.8, 5133-5138.

  82. Steele, J.A.M., McCullen, S.D., Callanan, A., Autefage, H., Accardi, M.A., Dini, D., Stevens, M.M.. Combinatorial scaffold morphologies for zonal articular cartilage engineering . Acta Biomaterialia: structure-property-function relationships in biomaterials, vol.10, no.5, 2065-2075.

  83. McCullen, Seth D., Autefage, Hélène, Callanan, Anthony, Gentleman, Eileen, Stevens, Molly M.. Anisotropic Fibrous Scaffolds for Articular Cartilage Regeneration. Tissue engineering. Part A, vol.18, no.19, 2073-2083.

  84. Vaquette, C., Cooper-White, J.. A simple method for fabricating 3-D multilayered composite scaffolds. Acta Biomaterialia: structure-property-function relationships in biomaterials, vol.9, no.1, 4599-4608.

  85. Salerno, A., Zeppetelli, S., Di Maio, E., Iannace, S., Netti, P.A.. Processing/structure/property relationship of multi‐scaled PCL and PCL–HA composite scaffolds prepared via gas foaming and NaCl reverse templating. Biotechnology and bioengineering, vol.108, no.4, 963-976.

  86. 10.1016/B978-0-08-102563-5.00006-X 

  87. Badylak, Stephen F., Tullius, Robert, Kokini, Klod, Shelbourne, K. Donald, Klootwyk, Thomas, Voytik, Sherry L., Kraine, Meredith R., Simmons, Cassandra. The use of xenogeneic small intestinal submucosa as a biomaterial for Achille's tendon repair in a dog model. Journal of biomedical materials research, vol.29, no.8, 977-985.

  88. Verbruggen, Sanne, Luining, Daan, van Essen, Anon, Post, Mark J.. Bovine myoblast cell production in a microcarriers-based system. Cytotechnology, vol.70, no.2, 503-512.

  89. Bodiou, Vincent, Moutsatsou, Panagiota, Post, Mark J.. Microcarriers for Upscaling Cultured Meat Production. Frontiers in nutrition : FNUT, vol.7, 10-.

  90. 10.1016/B978-1-78242-455-0.00008-2 

  91. Murphy, Sean V, Atala, Anthony. 3D bioprinting of tissues and organs. Nature biotechnology, vol.32, no.8, 773-785.

  92. 10.22203/eCM.v005a03 

  93. Zhu, Wei, Ma, Xuanyi, Gou, Maling, Mei, Deqing, Zhang, Kang, Chen, Shaochen. 3D printing of functional biomaterials for tissue engineering. Current opinion in biotechnology, vol.40, 103-112.

  94. Vijayavenkataraman, Sanjairaj, Yan, Wei-Cheng, Lu, Wen Feng, Wang, Chi-Hwa, Fuh, Jerry Ying Hsi. 3D bioprinting of tissues and organs for regenerative medicine. Advanced drug delivery reviews, vol.132, 296-332.

  95. Santoni, Silvia, Gugliandolo, Simone G., Sponchioni, Mattia, Moscatelli, Davide, Colosimo, Bianca M.. 3D bioprinting: current status and trends-a guide to the literature and industrial practice. Bio-design and manufacturing, vol.5, no.1, 14-42.

  96. Kang, Dong-Hee, Louis, Fiona, Liu, Hao, Shimoda, Hiroshi, Nishiyama, Yasutaka, Nozawa, Hajime, Kakitani, Makoto, Takagi, Daisuke, Kasa, Daijiro, Nagamori, Eiji, Irie, Shinji, Kitano, Shiro, Matsusaki, Michiya. Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nature communications, vol.12, no.1, 5059-.

  97. Chang, Robert, Nam, Jae, Sun, Wei. Effects of Dispensing Pressure and Nozzle Diameter on Cell Survival from Solid Freeform Fabrication-Based Direct Cell Writing. Tissue engineering. Part A, vol.14, no.1, 41-48.

  98. Bejoy, Aathma Merin, Makkithaya, Kausalya Neelavara, Hunakunti, Bhagesh Basavraj, Hegde, Anarghya, Krishnamurthy, Keerthana, Sarkar, Aparajita, Lobo, Carol Felcita, Keshav, D.V.S., G, Dharshini, S, Dhivya Dharshini, Mascarenhas, Selinda, Chakrabarti, Shweta, Kalepu, Sree Raja Rajeswari Devi, Paul, Bobby, Mazumder, Nirmal. An insight on advances and applications of 3d bioprinting: A review. Bioprinting, vol.24, e00176-.

  99. Lee, K.-S., Kim, R.H., Yang, D.-Y., Park, S.H.. Advances in 3D nano/microfabrication using two-photon initiated polymerization. Progress in polymer science, vol.33, no.6, 631-681.

  100. Application of laser printing to mammalian cells. Thin solid films, vol.453, 383-387.

  101. Hölzl, Katja, Lin, Shengmao, Tytgat, Liesbeth, Van Vlierberghe, Sandra, Gu, Linxia, Ovsianikov, Aleksandr. Bioink properties before, during and after 3D bioprinting. Biofabrication, vol.8, no.3, 032002-.

  102. Hoffman, Allan S. Hydrogels for biomedical applications. Advanced drug delivery reviews, vol.54, no.1, 3-12.

  103. Chaudhuri, Ovijit, Gu, Luo, Klumpers, Darinka, Darnell, Max, Bencherif, Sidi A., Weaver, James C., Huebsch, Nathaniel, Lee, Hong-pyo, Lippens, Evi, Duda, Georg N., Mooney, David J.. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature materials, vol.15, no.3, 326-334.

  104. Humphries, Jonathan D., Byron, Adam, Humphries, Martin J.. Integrin ligands at a glance. Journal of cell science, vol.119, no.19, 3901-3903.

  105. Colosi, Cristina, Shin, Su Ryon, Manoharan, Vijayan, Massa, Solange, Costantini, Marco, Barbetta, Andrea, Dokmeci, Mehmet Remzi, Dentini, Mariella, Khademhosseini, Ali. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low‐Viscosity Bioink. Advanced materials, vol.28, no.4, 677-684.

  106. Rutz, Alexandra L., Lewis, Phillip L., Shah, Ramille N.. Toward next-generation bioinks: Tuning material properties pre- and post-printing to optimize cell viability. MRS bulletin, vol.42, no.8, 563-570.

  107. Billiet, T., Gevaert, E., De Schryver, T., Cornelissen, M., Dubruel, P.. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, vol.35, no.1, 49-62.

  108. Paxton, Naomi, Smolan, Willi, Böck, Thomas, Melchels, Ferry, Groll, Jürgen, Jungst, Tomasz. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication, vol.9, no.4, 044107-.

  109. Ouyang, Liliang, Yao, Rui, Zhao, Yu, Sun, Wei. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, vol.8, no.3, 035020-.

  110. Waldman, S.D., Couto, D.C., Grynpas, M.D., Pilliar, R.M., Kandel, R.A.. A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage. Osteoarthritis and cartilage, vol.14, no.4, 323-330.

  111. Correia, V., Panadero, J. A., Ribeiro, C., Sencadas, V., Rocha, J. G., Gomez Ribelles, J. L., Lanceros-Méndez, S.. Design and validation of a biomechanical bioreactor for cartilage tissue culture. Biomechanics and modeling in mechanobiology, vol.15, no.2, 471-478.

  112. Chen, Huang-Chi, Hu, Yu-Chen. Bioreactors for tissue engineering. Biotechnology letters. : a monthly journal for the rapid communication of results and developments in all aspects of biotechnology, vol.28, no.18, 1415-1423.

  113. Martin Modulation of the mechanical properties of tissue-engineered cartilage Biorheology 2000 37 141 

  114. 10.1016/B978-0-08-087780-8.00112-1 

  115. Mauck, Robert L., Soltz, Michael A., Wang, Christopher C. B., Wong, Dennis D., Chao, Pen-Hsiu Grace, Valhmu, Wilmot B., Hung, Clark T., Ateshian, Gerard A.. Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels. Journal of biomechanical engineering, vol.122, no.3, 252-260.

  116. Grayson, Warren L., Fröhlich, Mirjam, Yeager, Keith, Bhumiratana, Sarindr, Chan, M. Ete, Cannizzaro, Christopher, Wan, Leo Q., Liu, X. Sherry, Guo, X. Edward, Vunjak-Novakovic, Gordana. Engineering anatomically shaped human bone grafts. Proceedings of the National Academy of Sciences of the United States of America, vol.107, no.8, 3299-3304.

  117. Zimmermann, W.-H., Schneiderbanger, K., Schubert, P., Didié, M., Münzel, F., Heubach, J.F., Kostin, S., Neuhuber, W.L., Eschenhagen, T.. Tissue Engineering of a Differentiated Cardiac Muscle Construct. Circulation research : a journal of the American Heart Association, vol.90, no.2, 223-230.

  118. Zimmermann, Wolfram-Hubertus, Melnychenko, Ivan, Wasmeier, Gerald, Didié, Michael, Naito, Hiroshi, Nixdorff, Uwe, Hess, Andreas, Budinsky, Lubos, Brune, Kay, Michaelis, Bjela, Dhein, Stefan, Schwoerer, Alexander, Ehmke, Heimo, Eschenhagen, Thomas. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature medicine, vol.12, no.4, 452-458.

  119. Radisic, Milica, Marsano, Anna, Maidhof, Robert, Wang, Yadong, Vunjak-Novakovic, Gordana. Cardiac tissue engineering using perfusion bioreactor systems. Nature protocols, vol.3, no.4, 719-738.

  120. Tandon, Nina, Cannizzaro, Christopher, Chao, Pen-Hsiu Grace, Maidhof, Robert, Marsano, Anna, Au, Hoi Ting Heidi, Radisic, Milica, Vunjak-Novakovic, Gordana. Electrical stimulation systems for cardiac tissue engineering. Nature protocols, vol.4, no.2, 155-173.

  121. Maidhof, Robert, Tandon, Nina, Lee, Eun Jung, Luo, Jianwen, Duan, Yi, Yeager, Keith, Konofagou, Elisa, Vunjak-Novakovic, Gordana. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue : Cardiac tissue engineering with perfusion and electrical stimulation. Journal of tissue engineering and regenerative medicine, vol.6, no.10, e12-e23.

  122. Guan, Xin, Lei, Qingzi, Yan, Qiyang, Li, Xueliang, Zhou, Jingwen, Du, Guocheng, Chen, Jian. Trends and ideas in technology, regulation and public acceptance of cultured meat. Future foods : a dedicated journal for sustainability in food science, vol.3, 100032-.

  123. Bryant, Christopher, Barnett, Julie. Consumer acceptance of cultured meat: A systematic review. Meat science, vol.143, 8-17.

  124. Wilks, Matti, Phillips, Clive J. C.. Attitudes to in vitro meat: A survey of potential consumers in the United States. PloS one, vol.12, no.2, e0171904-.

  125. Hocquette, Aurélie, Lambert, Carla, Sinquin, Clémentine, Peterolff, Laure, Wagner, Zoé, Bonny, Sarah P F, Lebert, André, Hocquette, Jean-François. Educated consumers don't believe artificial meat is the solution to the problems with the meat industry. Journal of integrative agriculture, vol.14, no.2, 273-284.

  126. Hocquette, Élise, Liu, Jingjing, Ellies-Oury, Marie-Pierre, Chriki, Sghaier, Hocquette, Jean-François. Does the future of meat in France depend on cultured muscle cells? Answers from different consumer segments. Meat science, vol.188, 108776-.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로