최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of inequalities and applications, v.2022 no.1, 2022년, pp.109 -
Galindo, Shirley Mae , Ike, Koichiro , Liu, Xuefeng
AbstractFor the linear Lagrange interpolation over a triangular domain, we propose an efficient algorithm to rigorously evaluate the interpolation error constant under the maximum norm by using the finite-element method (FEM). In solving the optimization problem corresponding to the interpolation er...
Comput. Methods Appl. Mech. Eng. F. Kikuchi 196 37-40 3750 2007 10.1016/j.cma.2006.10.029 Kikuchi, F., Liu, X.: Estimation of interpolation error constants for the p0 and p1 triangular finite elements. Comput. Methods Appl. Mech. Eng. 196(37-40), 3750-3758 (2007)
J. Math. Sci. Univ. Tokyo X. Liu 17 1 27 2010 Liu, X., Kikuchi, F.: Analysis and estimation of error constants for $P_{0}$ and $P_{1}$ interpolations over triangular finite elements. J. Math. Sci. Univ. Tokyo 17(1), 27-78 (2010)
RIMS Kokyuroku K. Kobayashi 1733 58 2010 Kobayashi, K.: On the interpolation constants over triangular elements. RIMS Kokyuroku 1733, 58-77 (2010)
Appl. Math. Comput. X. Liu 319 1 693 2018 10.1016/j.amc.2017.08.020 Liu, X., You, C.: Explicit bound for quadratic Lagrange interpolation constant on triangular finite elements. Appl. Math. Comput. 319(1), 693-701 (2018). https://doi.org/10.1016/j.amc.2017.08.020
Jpn. J. Ind. Appl. Math. Y.-C.S. Shih-Kang Liao 36 521 2019 10.1007/s13160-019-00351-9 Shih-Kang Liao, Y.-C.S., Liu, X.: Optimal estimation for the Fujino-Morley interpolation error constants. Jpn. J. Ind. Appl. Math. 36, 521-542 (2019). https://doi.org/10.1007/s13160-019-00351-9
SIAM J. Numer. Anal. S. Waldron 35 3 1191 1998 10.1137/S0036142996313154 Waldron, S.: The error in linear interpolation at the vertices of a simplex. SIAM J. Numer. Anal. 35(3), 1191-1200 (1998). https://doi.org/10.1137/S0036142996313154
SIAM J. Sci. Stat. Comput. E.F. D’Azevedo 10 6 1063 1989 10.1137/0910064 D’Azevedo, E.F., Simpson, R.B.: On optimal interpolation triangle incidences. SIAM J. Sci. Stat. Comput. 10(6), 1063-1075 (1989). https://doi.org/10.1137/0910064
J. Shewchuk 115 2002 Invited Talk, 11th International Meshing Roundtable Shewchuk, J.: What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures. In: Invited Talk, 11th International Meshing Roundtable, pp. 115-126. Springer, New York (2002)
SIAM J. Numer. Anal. W. Cao 43 1 19 2005 10.1137/S0036142903433492 Cao, W.: On the error of linear interpolation and orientation, aspect ratio and internal angles of a triangle. SIAM J. Numer. Anal. 43(1), 19-40 (2005). https://doi.org/10.1137/S0036142903433492
J. Phys. Soc. Jpn. H. Fujita 10 1 1 1955 10.1143/JPSJ.10.1 Fujita, H.: Contribution to the theory of upper and lower bounds in boundary value problems. J. Phys. Soc. Jpn. 10(1), 1-8 (1955). https://doi.org/10.1143/JPSJ.10.1
P.G. Ciarlet 17 1991 Finite Element Methods (Part 1). Handbook of Numerical Analysis 10.1016/S1570-8659(05)80039-0 Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Finite Element Methods (Part 1). Handbook of Numerical Analysis, vol. 2, pp. 17-351. Elsevier, Amsterdam (1991). https://doi.org/10.1016/S1570-8659(05)80039-0
Comput. Methods Appl. Mech. Eng. M. Ainsworth 281 184 2014 10.1016/j.cma.2014.08.005 Ainsworth, M., Vejchodský, T.: Robust error bounds for finite element approximation of reaction-diffusion problems with non-constant reaction coefficient in arbitrary space dimension. Comput. Methods Appl. Mech. Eng. 281, 184-199 (2014)
Math. Comput. C. Carstensen 83 290 2605 2014 10.1090/S0025-5718-2014-02833-0 Carstensen, C., Gedicke, J.: Guaranteed lower bounds for eigenvalues. Math. Comput. 83(290), 2605-2629 (2014)
SIAM J. Numer. Anal. Y.H.X. Chun’guang 57 3 1395 2019 10.1137/18M1189592 Chun’guang, Y.H.X., Liu, X.: Guaranteed eigenvalue bounds for the Steklov eigenvalue problem. SIAM J. Numer. Anal. 57(3), 1395-1410 (2019). https://doi.org/10.1137/18M1189592
Appl. Math. Comput. X. Liu 267 341 2015 10.1016/j.amc.2015.03.048 Liu, X.: A framework of verified eigenvalue bounds for self-adjoint differential operators. Appl. Math. Comput. 267, 341-355 (2015). https://doi.org/10.1016/j.amc.2015.03.048
J. Approx. Theory G.-Z. Chang 40 1 11 1984 10.1016/0021-9045(84)90132-1 Chang, G.-Z., Davis, P.J.: The convexity of Bernstein polynomials over triangles. J. Approx. Theory 40(1), 11-28 (1984). https://doi.org/10.1016/0021-9045(84)90132-1
Comput. Aided Geom. Des. R.T. Farouki 29 6 379 2012 10.1016/j.cagd.2012.03.001 Farouki, R.T.: The Bernstein polynomial basis: a centennial retrospective. Comput. Aided Geom. Des. 29(6), 379-419 (2012). https://doi.org/10.1016/j.cagd.2012.03.001
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.