$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Sustainable Reuse of Waste Tire Textile Fibers (WTTF) as Reinforcements 원문보기

Polymers, v.14 no.19, 2022년, pp.3933 -   

Fazli, Ali ,  Rodrigue, Denis

Abstract AI-Helper 아이콘AI-Helper

Waste tire textile fibers (WTTF), as a by-product (10–15% by weight of tires) of end-of-life tires (ELT) mechanical recycling (grinding), are classified as hazardous wastes and traditionally burnt (thermal recycling) or buried (landfilling), leading to several environmental and ecological iss...

주제어

참고문헌 (148)

  1. 1. Sahajwalla V. Zaharia M. Rahman M. Khanna R. Saha-Chaudhury N. O’Kane P. Dicker J. Skidmore C. Knights D. Recycling rubber tyres and waste plastics in EAF steelmaking Steel Res. Int. 2011 82 566 572 10.1002/srin.201100047 

  2. 2. Ramarad S. Khalid M. Ratnam C. Chuah A.L. Rashmi W. Waste tire rubber in polymer blends: A review on the evolution, properties and future Prog. Mater. Sci. 2015 72 100 140 10.1016/j.pmatsci.2015.02.004 

  3. 3. Archibong F.N. Sanusi O.M. Médéric P. Hocine N.A. An overview on the recycling of waste ground tyre rubbers in thermoplastic matrices: Effect of added fillers Resour. Conserv. Recycl. 2021 175 105894 105906 10.1016/j.resconrec.2021.105894 

  4. 4. Zhang F. Zhao Y. Wang D. Yan M. Zhang J. Zhang P. Ding T. Chen L. Chen C. Current technologies for plastic waste treatment: A review J. Clean. Prod. 2021 282 124523 10.1016/j.jclepro.2020.124523 

  5. 5. Tang Z. Li W. Tam V.W. Xue C. Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials Resour. Conserv. Recycl. X 2020 6 100036 10.1016/j.rcrx.2020.100036 

  6. 6. United States Tire Manufacturers Association US Scrap Tire Management Summary U. T. M. Association Washington, DC, USA 2018 

  7. 7. Canadian Association of Tire Recycling Agencies CATRA Annual Report Canadian Association of Tire Recycling Agencies Toronto, ON, Canada 2017 

  8. 8. European Tyre and Rubber Manufacturers Association End-of-life Tyre Report Europe European Tyre and Rubber Manufacturers Association Brussels, Belgium 2015 

  9. 9. Mountjoy E. Hasthanayake D. Freeman T. Stocks & Fate of End of Life Tyres-2013–2014 Study Hyder Consulting Pty Ltd. Melbourne, Australia 2015 

  10. 10. Landi D. Gigli S. Germani M. Marconi M. Investigating the feasibility of a reuse scenario for textile fibres recovered from end-of-life tyres Waste Manag. 2018 75 187 204 10.1016/j.wasman.2018.02.018 29454817 

  11. 11. Fazli A. Rodrigue D. Waste Rubber Recycling: A Review on the Evolution and Properties of Thermoplastic Elastomers Materials 2020 13 782 10.3390/ma13030782 32046356 

  12. 12. Chen J. Chen K. Tong L. On the pyrolysis kinetics of scrap automotive tires J. Hazard. Mater. 2001 84 43 55 10.1016/S0304-3894(01)00180-7 11376883 

  13. 13. Fazli A. Rodrigue D. Recycling waste tires into ground tire rubber (GTR)/rubber compounds: A review J. Compos. Sci. 2020 4 103 10.3390/jcs4030103 

  14. 14. Forrest M.J. Recycling and Re-Use of Waste Rubber 2nd ed. De Gruyter Berlin, Germany 2019 

  15. 15. Yerezhep D. Tychengulova A. Sokolov D. Aldiyarov A. A multifaceted approach for cryogenic waste tire recycling Polymers 2021 13 2494 10.3390/polym13152494 34372098 

  16. 16. Awolusi T.F. Oke O.L. Atoyebi O.D. Akinkurolere O.O. Sojobi A.O. Waste tires steel fiber in concrete: A review Innov. Infrastruct. Solut. 2021 6 1 12 10.1007/s41062-020-00393-w 

  17. 17. Ferdous W. Manalo A. Siddique R. Mendis P. Zhuge Y. Wong H.S. Lokuge W. Aravinthan T. Schubel P. Recycling of landfill wastes (tyres, plastics and glass) in construction–A review on global waste generation, performance, application and future opportunities Resour. Conserv. Recycl. 2021 173 105745 10.1016/j.resconrec.2021.105745 

  18. 18. Karger-Kocsis J. Mészáros L. Bárány T. Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers J. Mater. Sci. 2013 48 1 38 10.1007/s10853-012-6564-2 

  19. 19. Levendis Y.A. Atal A. Carlson J. Dunayevskiy Y. Vouros P. Comparative study on the combustion and emissions of waste tire crumb and pulverized coal Environ. Sci. Technol. 1996 30 2742 2754 10.1021/es950910u 

  20. 20. Williams P.T. Pyrolysis of waste tyres: A review Waste Manag. 2013 33 1714 1728 10.1016/j.wasman.2013.05.003 23735607 

  21. 21. Sathiskumar C. Karthikeyan S. Recycling of waste tires and its energy storage application of by-products–a review Sustain. Mater. Technol. 2019 22 00125 00130 10.1016/j.susmat.2019.e00125 

  22. 22. Tang L. Huang H. An investigation of sulfur distribution during thermal plasma pyrolysis of used tires J. Anal. Appl. Pyrolysis 2004 72 35 40 10.1016/j.jaap.2004.02.001 

  23. 23. Medina N.F. Garcia R. Hajirasouliha I. Pilakoutas K. Guadagnini M. Raffoul S. Composites with recycled rubber aggregates: Properties and opportunities in construction Constr. Build. Mater. 2018 188 884 897 10.1016/j.conbuildmat.2018.08.069 

  24. 24. Zanchet A. Carli L. Giovanela M. Brandalise R. Crespo J. Use of styrene butadiene rubber industrial waste devulcanized by microwave in rubber composites for automotive application Mater. Des. 2012 39 437 443 10.1016/j.matdes.2012.03.014 

  25. 25. Siddika A. al Mamun M.A. Alyousef R. Amran Y.M. Aslani F. Alabduljabbar H. Properties and utilizations of waste tire rubber in concrete: A review Constr. Build. Mater. 2019 224 711 731 10.1016/j.conbuildmat.2019.07.108 

  26. 26. Bilema M. Aman M. Hassan N. Haloul M. Modibbo S. Influence of crumb rubber size particles on moisture damage and strength of the hot mix asphalt Mater. Today Proc. 2021 42 2387 2391 10.1016/j.matpr.2020.12.423 

  27. 27. Milad A. Ahmeda A.G. Taib A.M. Rahmad S. Solla M. Yusoff N.I.M. A review of the feasibility of using crumb rubber derived from end-of-life tire as asphalt binder modifier J. Rubber Res. 2020 23 203 216 10.1007/s42464-020-00050-y 

  28. 28. Alfayez S.A. Suleiman A.R. Nehdi M.L. Recycling tire rubber in asphalt pavements: State of the art Sustainability 2020 12 9076 10.3390/su12219076 

  29. 29. Moreno-Navarro F. Sol-Sánchez M. Rubio-Gámez M. Reuse of deconstructed tires as anti-reflective cracking mat systems in asphalt pavements Constr. Build. Mater. 2014 53 182 189 10.1016/j.conbuildmat.2013.11.101 

  30. 30. Naseem A. Mumtaz W. de Backer H. Stabilization of expansive soil using tire rubber powder and cement kiln dust Soil. Mech. Found. Eng. 2019 56 54 58 10.1007/s11204-019-09569-8 

  31. 31. Fernández A. Barriocanal C. Alvarez R. Pyrolysis of a waste from the grinding of scrap tyres J. Hazard. Mater. 2012 203 236 243 10.1016/j.jhazmat.2011.12.014 22204837 

  32. 32. Adhikari J. Das A. Sinha T. Saha P. Kim J.K. Grinding of Waste Rubber Grinding of Waste Rubber: Royal Society of Chemistry Kim K.J. Saha P. Thomas S. Haponiuk J.T. Aswathi M.K. Royal Society of Chemistry (RSC) London, UK 2018 1 23 10.1039/9781788013482-00001 

  33. 33. Thai Q.B. Le-Cao K. Nguyen P.T. Le P.K. Phan-Thien N. Duong H.M. Fabrication and optimization of multifunctional nanoporous aerogels using recycled textile fibers from car tire wastes for oil-spill cleaning, heat-insulating and sound absorbing applications Colloids Surf. Physicochem. Eng. Asp. 2021 628 127363 127378 10.1016/j.colsurfa.2021.127363 

  34. 34. Maderuelo-Sanz R. Nadal-Gisbert A.V. Crespo-Amorós J.E. Parres-García F. A novel sound absorber with recycled fibers coming from end of life tires (ELTs) Appl. Acoust. 2012 73 402 408 10.1016/j.apacoust.2011.12.001 

  35. 35. Medina N.F. Medina D.F. Hernández-Olivares F. Navacerrada M. Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling Constr. Build. Mater. 2017 144 563 573 10.1016/j.conbuildmat.2017.03.196 

  36. 36. Onuaguluchi O. Banthia N. Value-added reuse of scrap tire polymeric fibers in cement-based structural applications J. Clean. Prod. 2019 231 543 555 10.1016/j.jclepro.2019.05.225 

  37. 37. Abbaspour M. Aflaki E. Nejad F.M. Reuse of waste tire textile fibers as soil reinforcement J. Clean. Prod. 2019 207 1059 1071 10.1016/j.jclepro.2018.09.253 

  38. 38. Chen M. Zhong H. Zhang M. Flexural fatigue behaviour of recycled tyre polymer fibre reinforced concrete Cem. Concr. Compos. 2020 105 103441 103483 10.1016/j.cemconcomp.2019.103441 

  39. 39. Baričević A. Rukavina M.J. Pezer M. Štirmer N. Influence of recycled tire polymer fibers on concrete properties Cem. Concr. Compos. 2018 91 29 41 10.1016/j.cemconcomp.2018.04.009 

  40. 40. Narani S. Abbaspour M. Hosseini S.M.M. Aflaki E. Nejad F.M. Sustainable reuse of Waste Tire Textile Fibers (WTTFs) as reinforcement materials for expansive soils: With a special focus on landfill liners/covers J. Clean. Prod. 2020 247 119151 10.1016/j.jclepro.2019.119151 

  41. 41. Bekhiti M. Trouzine H. Rabehi M. Influence of waste tire rubber fibers on swelling behavior, unconfined compressive strength and ductility of cement stabilized bentonite clay soil Constr. Build. Mater. 2019 208 304 313 10.1016/j.conbuildmat.2019.03.011 

  42. 42. Onuaguluchi O. Banthia N. Durability performance of polymeric scrap tire fibers and its reinforced cement mortar Mater. Struct. 2017 50 1 10 10.1617/s11527-017-1025-7 

  43. 43. Moghaddamzadeh S. Rodrigue D. The effect of polyester recycled tire fibers mixed with ground tire rubber on polyethylene composites. Part I: Morphological analysis Prog. Rubber Plast. Recycl. 2018 34 200 220 10.1177/1477760618798267 

  44. 44. Fazli A. Rodrigue D. Phase morphology, mechanical, and thermal properties of fiber-reinforced thermoplastic elastomer: Effects of blend composition and compatibilization J. Reinf. Plast. Compos. 2022 41 267 283 10.1177/07316844211051749 35469127 

  45. 45. Acevedo B. Fernández A. Barriocanal C. Identification of polymers in waste tyre reinforcing fibre by thermal analysis and pyrolysis J. Anal. Appl. Pyrolysis 2015 111 224 232 10.1016/j.jaap.2014.11.005 

  46. 46. Wong S. Sui G. Yue C. Mai Y.-W. Characterization of microstructures and toughening behavior of fiber-containing toughened nylon 6, 6 J. Mater. Sci. 2002 37 2659 2667 10.1023/A:1015808814451 

  47. 47. Abbaspour M. Narani S. Aflaki E. Nejad F.M. Hosseini S.M.M. Strength and swelling properties of a waste tire textile fiber-reinforced expansive soil Geosynth. Int. 2020 27 476 489 10.1680/jgein.20.00010 

  48. 48. Putman B.J. Amirkhanian S.N. Utilization of waste fibers in stone matrix asphalt mixtures Resour. Conserv. Recycl. 2004 42 265 274 10.1016/j.resconrec.2004.04.005 

  49. 49. Bockstal L. Berchem T. Schmetz Q. Richel A. Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: A review J. Clean. Prod. 2019 236 117574 10.1016/j.jclepro.2019.07.049 

  50. 50. Firoozi A.A. Olgun C.G. Firoozi A.A. Baghini M.S. Fundamentals of soil stabilization Int. J. Geo-Eng. 2017 8 1 16 10.1186/s40703-017-0064-9 

  51. 51. Kianimehr M. Shourijeh P.T. Binesh S.M. Mohammadinia A. Arulrajah A. Utilization of recycled concrete aggregates for light-stabilization of clay soils Constr. Build. Mater. 2019 227 116792 10.1016/j.conbuildmat.2019.116792 

  52. 52. Phanikumar B. Shankar M.U. Studies on hydraulic conductivity of fly ash-stabilised expansive clay liners Geotech. Geol. Eng. 2016 34 449 462 10.1007/s10706-015-9956-7 

  53. 53. Cabalar A.F. Karabash Z. Mustafa W.S. Stabilising a clay using tyre buffings and lime Road Mater. Pavement Des. 2014 15 872 891 10.1080/14680629.2014.939697 

  54. 54. Zhang M. Guo H. El-Korchi T. Zhang G. Tao M. Experimental feasibility study of geopolymer as the next-generation soil stabilizer Constr. Build. Mater. 2013 47 1468 1478 10.1016/j.conbuildmat.2013.06.017 

  55. 55. Khemissa M. Mahamedi A. Cement and lime mixture stabilization of an expansive overconsolidated clay Appl. Clay Sci. 2014 95 104 110 10.1016/j.clay.2014.03.017 

  56. 56. Tyagi A. Soni D. Effects of Granulated Ground Blast Furnace Slag and Fly Ash on Stabilization of Soil Agnihotri A. Reddy K. Bansal A. Springer Singapore 2019 79 90 10.1007/978-981-13-7017-5_9 

  57. 57. Thyagaraj T. Soujanya D. Polypropylene fiber reinforced bentonite for waste containment barriers Appl. Clay Sci. 2017 142 153 162 10.1016/j.clay.2017.02.009 

  58. 58. Chaduvula U. Viswanadham B. Kodikara J. A study on desiccation cracking behavior of polyester fiber-reinforced expansive clay Appl. Clay Sci. 2017 142 163 172 10.1016/j.clay.2017.02.008 

  59. 59. Yao X. Huang G. Wang M. Dong X. Mechanical properties and microstructure of PVA fiber reinforced cemented soil KSCE J. Civ. Eng. 2021 25 482 491 10.1007/s12205-020-0998-x 

  60. 60. Mirzababaei M. Mohamed M. Arulrajah A. Horpibulsuk S. Anggraini V. Practical approach to predict the shear strength of fibre-reinforced clay Geosynth. Int. 2018 25 50 66 10.1680/jgein.17.00033 

  61. 61. Rabab’ah S. al Hattamleh O. Aldeeky H. Alfoul B.A. Effect of glass fiber on the properties of expansive soil and its utilization as subgrade reinforcement in pavement applications Case Stud. Constr. Mater. 2021 14 00485 00496 10.1016/j.cscm.2020.e00485 

  62. 62. Bao X. Huang Y. Jin Z. Xiao X. Tang W. Cui H. Chen X. Experimental investigation on mechanical properties of clay soil reinforced with carbon fiber Constr. Build. Mater. 2021 280 122517 10.1016/j.conbuildmat.2021.122517 

  63. 63. Ghadakpour M. Choobbasti A.J. Kutanaei S.S. Investigation of the Kenaf fiber hybrid length on the properties of the cement-treated sandy soil Transp. Geotech. 2020 22 100301 10.1016/j.trgeo.2019.100301 

  64. 64. Karatai T.R. Kaluli J.W. Kabubo C. Thiong’o G. Soil stabilization using rice husk ash and natural lime as an alternative to cutting and filling in road construction J. Constr. Eng. Manag. 2017 143 04016127 10.1061/(ASCE)CO.1943-7862.0001235 

  65. 65. Syed M. GuhaRay A. Effect of natural fiber reinforcement on strength response of alkali activated binder treated expansive soil: Experimental investigation and reliability analysis Constr. Build. Mater. 2021 273 121743 10.1016/j.conbuildmat.2020.121743 

  66. 66. Dang L.C. Fatahi B. Khabbaz H. Behaviour of expansive soils stabilized with hydrated lime and bagasse fibres Procedia Eng. 2016 143 658 665 10.1016/j.proeng.2016.06.093 

  67. 67. Kafodya I. Okonta F. Effects of natural fiber inclusions and pre-compression on the strength properties of lime-fly ash stabilised soil Constr. Build. Mater. 2018 170 737 746 10.1016/j.conbuildmat.2018.02.194 

  68. 68. Yixian W. Panpan G. Shengbiao S. Haiping Y. Binxiang Y. Study on strength influence mechanism of fiber-reinforced expansive soil using jute Geotech. Geol. Eng. 2016 34 1079 1088 10.1007/s10706-016-0028-4 

  69. 69. Yoon Y.W. Heo S.B. Kim K.S. Geotechnical performance of waste tires for soil reinforcement from chamber tests Geotext. Geomembr. 2008 26 100 107 10.1016/j.geotexmem.2006.10.004 

  70. 70. Valipour M. Shourijeh P.T. Mohammadinia A. Application of recycled tire polymer fibers and glass fibers for clay reinforcement Transp. Geotech. 2021 27 100474 10.1016/j.trgeo.2020.100474 

  71. 71. Olgun M. Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil Geosynth. Int. 2013 20 263 275 10.1680/gein.13.00016 

  72. 72. Wang Y.-X. Guo P.-P. Ren W.-X. Yuan B.-X. Yuan H.-P. Zhao Y.-L. Shan S.-B. Cao P. Laboratory investigation on strength characteristics of expansive soil treated with jute fiber reinforcement Int. J. Geomech. 2017 17 04017101 10.1061/(ASCE)GM.1943-5622.0000998 

  73. 73. Tabakouei A.R. Narani S. Abbaspour M. Aflaki E. Siddiqua S. Coupled specimen and fiber dimensions influence measurement on the properties of fiber-reinforced soil Measurement 2022 188 110556 10.1016/j.measurement.2021.110556 

  74. 74. Narani S. Abbaspour M. Hosseini S.M.M. Nejad F.M. Long-term dynamic behavior of a sandy subgrade reinforced by Waste Tire Textile Fibers (WTTFs) Transp. Geotech. 2020 24 100375 10.1016/j.trgeo.2020.100375 

  75. 75. Abbaspour M. Narani S.S. Aflaki E. Nejad F.M. Behavior of a subgrade soil reinforced by waste tire textile fibers under static and cyclic loading J. Mater. Civ. Eng. 2020 32 04020208 10.1061/(ASCE)MT.1943-5533.0003279 

  76. 76. Abbaspour M. Narani S.S. Aflaki E. Nejad F.M. Dynamic characteristics of a sandy subgrade reinforced by waste tire textile fibres Int. J. Pavement Eng. 2020 23 2293 2308 10.1080/10298436.2020.1852560 

  77. 77. Mohammadifar L. Miraki H. Rahmani A. Jahandari S. Mehdizadeh B. Rasekh H. Samadi P. Samali B. Properties of Lime-Cement Concrete Containing Various Amounts of Waste Tire Powder under Different Ground Moisture Conditions Polymers 2022 14 482 10.3390/polym14030482 35160471 

  78. 78. Angelin A.F. da Silva F.M. Barbosa L.A. Lintz R.C. de Carvalho M.A. Franco R.A.S. Voids identification in rubberized mortar digital images using K-Means and Watershed algorithms J. Clean. Prod. 2017 164 455 464 10.1016/j.jclepro.2017.06.202 

  79. 79. Onuaguluchi O. Effects of surface pre-coating and silica fume on crumb rubber-cement matrix interface and cement mortar properties J. Clean. Prod. 2015 104 339 345 10.1016/j.jclepro.2015.04.116 

  80. 80. Mucsi G. Szenczi Á. Nagy S. Fiber reinforced geopolymer from synergetic utilization of fly ash and waste tire J. Clean. Prod. 2018 178 429 440 10.1016/j.jclepro.2018.01.018 

  81. 81. Song W. Yin J. Hybrid effect evaluation of steel fiber and carbon fiber on the performance of the fiber reinforced concrete Materials 2016 9 704 10.3390/ma9080704 

  82. 82. Zhao Q. Yu J. Geng G. Jiang J. Liu X. Effect of fiber types on creep behavior of concrete Constr. Build. Mater. 2016 105 416 422 10.1016/j.conbuildmat.2015.12.149 

  83. 83. Wang J. Dai Q. Si R. Guo S. Mechanical durability, and microstructural properties of macro synthetic polypropylene (PP) fiber-reinforced rubber concrete J. Clean. Prod. 2019 234 1351 1364 10.1016/j.jclepro.2019.06.272 

  84. 84. Yuan T.-F. Lee J.-Y. Min K.-H. Yoon Y.-S. Experimental Investigation on Mechanical Properties of Hybrid Steel and Polyethylene Fiber-Reinforced No-Slump High-Strength Concrete Int. J. Polym. Sci. 2019 2019 4737384 10.1155/2019/4737384 

  85. 85. Banthia N. Onuaguluchi O. Recycling Scrap Tire-Derived Fibers in Concrete Trans. Indian Natl. Acad. Eng. 2022 7 207 217 10.1007/s41403-021-00257-4 

  86. 86. Yu Z. Wang Y. Li J. Performance Investigation and Cost–Benefit Analysis of Recycled Tire Polymer Fiber-Reinforced Cemented Paste Backfill Polymers 2022 14 708 10.3390/polym14040708 35215621 

  87. 87. Banthia N. Gupta R. Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete Cem. Concr. Res. 2006 36 1263 1267 10.1016/j.cemconres.2006.01.010 

  88. 88. Pacheco-Torres R. Cerro-Prada E. Escolano F. Varela F. Fatigue performance of waste rubber concrete for rigid road pavements Constr. Build. Mater. 2018 176 539 548 10.1016/j.conbuildmat.2018.05.030 

  89. 89. Serdar M. Baričević A. Rukavina M.J. Pezer M. Bjegović D. Štirmer N. Shrinkage behaviour of fibre reinforced concrete with recycled tyre polymer fibres Int. J. Polym. Sci. 2015 215 145918 10.1155/2015/145918 

  90. 90. Chen M. Zhong H. Chen L. Zhang Y. Zhang M. Engineering properties and sustainability assessment of recycled fibre reinforced rubberised cementitious composite J. Clean. Prod. 2021 278 123996 124010 10.1016/j.jclepro.2020.123996 

  91. 91. Ranjbar N. Zhang M. Fiber-reinforced geopolymer composites: A review Cem. Concr. Compos. 2020 107 103498 10.1016/j.cemconcomp.2019.103498 

  92. 92. Walraven J.C. High performance fiber reinforced concrete: Progress in knowledge and design codes Mater. Struct. 2009 42 1247 1260 10.1617/s11527-009-9538-3 

  93. 93. Ríos J.D. Cifuentes H. Yu R.C. Ruiz G. Probabilistic flexural fatigue in plain and fiber-reinforced concrete Materials 2017 10 767 10.3390/ma10070767 

  94. 94. Pais J.C. Santos C.R. Presti D.L. Application of textile fibres from tire recycling in asphalt mixtures Road Mater. Pavement Des. 2021 23 1 22 10.1080/14680629.2021.1972034 

  95. 95. Jin D. Ge D. Zhou X. You Z. Asphalt Mixture with Scrap Tire Rubber and Nylon Fiber from Waste Tires: Laboratory Performance and Preliminary ME Design Analysis Buildings 2022 12 160 10.3390/buildings12020160 

  96. 96. Ling S. Yu F. Sun D. Sun G. Xu L. A comprehensive review of tire-pavement noise: Generation mechanism, measurement methods, and quiet asphalt pavement J. Clean. Prod. 2021 287 125056 10.1016/j.jclepro.2020.125056 

  97. 97. Wong C.C. Wong W.-G. Effect of crumb rubber modifiers on high temperature susceptibility of wearing course mixtures Constr. Build. Mater. 2007 21 1741 1745 10.1016/j.conbuildmat.2006.05.020 

  98. 98. Valdés-Vidal G. Calabi-Floody A. Duarte-Nass C. Mignolet C. Díaz C. Development of a New Additive Based on Textile Fibers of End-of-Life Tires (ELT) for Sustainable Asphalt Mixtures with Improved Mechanical Properties Polymers 2022 14 3250 10.3390/polym14163250 36015507 

  99. 99. Landi D. Marconi M. Bocci E. Germani M. Comparative life cycle assessment of standard, cellulose-reinforced and end of life tires fiber-reinforced hot mix asphalt mixtures J. Clean. Prod. 2020 248 119295 10.1016/j.jclepro.2019.119295 

  100. 100. Bocci E. Prosperi E. Recycling of reclaimed fibers from end-of-life tires in hot mix asphalt J. Traffic Transp. Eng. 2020 7 678 687 10.1016/j.jtte.2019.09.006 

  101. 101. Moreno F. Rubio M. Martinez-Echevarria M. Analysis of digestion time and the crumb rubber percentage in dry-process crumb rubber modified hot bituminous mixes Constr. Build. Mater. 2011 25 2323 2334 10.1016/j.conbuildmat.2010.11.029 

  102. 102. Chen H. Xu Q. Experimental study of fibers in stabilizing and reinforcing asphalt binder Fuel 2010 89 1616 1622 10.1016/j.fuel.2009.08.020 

  103. 103. Rubio M.C. Martínez G. Baena L. Moreno F. Warm mix asphalt: An overview J. Clean. Prod. 2012 24 76 84 10.1016/j.jclepro.2011.11.053 

  104. 104. Schiavoni S. Bianchi F. Asdrubali F. Insulation materials for the building sector: A review and comparative analysis Renew. Sust. Energ. Rev. 2016 62 988 1011 10.1016/j.rser.2016.05.045 

  105. 105. Thai Q.B. Chong R.O. Nguyen P.T. Le D.K. Le P.K. Phan-Thien N. Duong H.M. Recycling of waste tire fibers into advanced aerogels for thermal insulation and sound absorption applications J. Environ. Chem. Eng. 2020 8 104279 10.1016/j.jece.2020.104279 

  106. 106. Cao L. Fu Q. Si Y. Ding B. Yu J. Porous materials for sound absorption Compos. Commun. 2018 10 25 35 10.1016/j.coco.2018.05.001 

  107. 107. Baetens R. Jelle B.P. Gustavsen A. Aerogel insulation for building applications: A state-of-the-art review Energy Build. 2011 43 761 769 10.1016/j.enbuild.2010.12.012 

  108. 108. Gesser H. Goswami P. Aerogels and related porous materials Chem. Rev. 1989 89 765 788 10.1021/cr00094a003 

  109. 109. Thai Q.B. Siang T.E. Le D.K. Shah W.A. Phan-Thien N. Duong H.M. Advanced fabrication and multi-properties of rubber aerogels from car tire waste Colloids Surf. Physicochem. Eng. Asp. 2019 577 702 708 10.1016/j.colsurfa.2019.06.029 

  110. 110. Nguyen S.T. Feng J. Ng S.K. Wong J.P. Tan V.B. Duong H.M. Advanced thermal insulation and absorption properties of recycled cellulose aerogels Colloids Surf. Physicochem. Eng. Asp. 2014 445 128 134 10.1016/j.colsurfa.2014.01.015 

  111. 111. Cao L. Si Y. Wu Y. Wang X. Yu J. Ding B. Ultralight, superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption Nanoscale 2019 11 2289 2298 10.1039/C8NR09288E 30657513 

  112. 112. Sorour M.H. Hani H.A. Al-Bazedi G.A. El-Rafei A. Hydrophobic silica aerogels for oil spills clean-up, synthesis, characterization and preliminary performance evaluation J. Porous Mater. 2016 23 1401 1409 10.1007/s10934-016-0200-5 

  113. 113. Wang D. McLaughlin E. Pfeffer R. Lin Y. Adsorption of oils from pure liquid and oil–water emulsion on hydrophobic silica aerogels Sep. Purif. Technol. 2012 99 28 35 10.1016/j.seppur.2012.08.001 

  114. 114. Thai Q.B. Le D.K. Do N.H. Le P.K. Phan-Thien N. Wee C.Y. Duong H.M. Advanced aerogels from waste tire fibers for oil spill-cleaning applications J. Environ. Chem. Eng. 2020 8 104016 10.1016/j.jece.2020.104016 

  115. 115. Dorcheh A.S. Abbasi M. Silica aerogel, synthesis, properties and characterization J. Mater. Process. Technol. 2008 199 10 26 10.1016/j.jmatprotec.2007.10.060 

  116. 116. Thai Q.B. Nguyen S.T. Ho D.K. Tran T.D. Huynh D.M. Do N.H. Luu T.P. Le P.K. Le D.K. Phan-Thien N. Cellulose-based aerogels from sugarcane bagasse for oil spill-cleaning and heat insulation applications Carbohydr. Polym. 2020 228 115365 115371 10.1016/j.carbpol.2019.115365 31635729 

  117. 117. Shi M. Tang C. Yang X. Zhou J. Jia F. Han Y. Li Z. Superhydrophobic silica aerogels reinforced with polyacrylonitrile fibers for adsorbing oil from water and oil mixtures RSC Adv. 2017 7 4039 4045 10.1039/c6ra26831e 

  118. 118. Chang C. Zhang L. Cellulose-based hydrogels: Present status and application prospects Carbohydr. Polym. 2011 84 40 53 10.1016/j.carbpol.2010.12.023 

  119. 119. Shi J. Jiang K. Ren D. Zou H. Wang Y. Lv X. Zhang L. Structure and performance of reclaimed rubber obtained by different methods J. Appl. Polym. Sci. 2013 129 999 1007 10.1002/app.38727 

  120. 120. Sakai K. Kobayashi Y. Saito T. Isogai A. Partitioned airs at microscale and nanoscale: Thermal diffusivity in ultrahigh porosity solids of nanocellulose Sci. Rep. 2016 6 1 7 10.1038/srep20434 28442746 

  121. 121. Pham D. Phan-Thien N. On the optimal bounds for the effective conductivity of isotropic quasi-symmetric multiphase media J. Appl. Math. Phys. 1997 48 744 759 10.1007/PL00022512 

  122. 122. Xie X. Li D. Tsai T.-H. Liu J. Braun P.V. Cahill D.G. Thermal conductivity, heat capacity, and elastic constants of water-soluble polymers and polymer blends Macromolecules 2016 49 972 978 10.1021/acs.macromol.5b02477 

  123. 123. Faruk O. Bledzki A.K. Fink H.P. Sain M. Progress report on natural fiber reinforced composites Macromol. Mater. Eng. 2014 299 9 26 10.1002/mame.201300008 

  124. 124. Kakroodi A.R. Kazemi Y. Rodrigue D. Mechanical, rheological, morphological and water absorption properties of maleated polyethylene/hemp composites: Effect of ground tire rubber addition Compos. B. Eng 2013 51 337 344 10.1016/j.compositesb.2013.03.032 

  125. 125. Ghasemzadeh-Barvarz M. Duchesne C. Rodrigue D. Mechanical, water absorption, and aging properties of polypropylene/flax/glass fiber hybrid composites J. Compos. Mater. 2015 49 3781 3798 10.1177/0021998314568576 

  126. 126. Lokesh P. Kumari T.S. Gopi R. Loganathan G.B. A study on mechanical properties of bamboo fiber reinforced polymer composite Mater. Today Proc. 2020 22 897 903 10.1016/j.matpr.2019.11.100 

  127. 127. Sever K. Sarikanat M. Seki Y. Erkan G. Erdoğan Ü.H. Erden S. Surface treatments of jute fabric: The influence of surface characteristics on jute fabrics and mechanical properties of jute/polyester composites Ind. Crop. Prod. 2012 35 22 30 10.1016/j.indcrop.2011.05.020 

  128. 128. Fávaro S.L. Lopes M.S. Neto A.G.V.d. de Santana R.R. Radovanovic E. Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites Compos. Part A Appl. Sci. 2010 41 154 160 10.1016/j.compositesa.2009.09.021 

  129. 129. Fernandes E.M. Correlo V.M. Mano J.F. Reis R.L. Novel cork–polymer composites reinforced with short natural coconut fibres: Effect of fibre loading and coupling agent addition Compos. Sci. Technol. 2013 78 56 62 10.1016/j.compscitech.2013.01.021 

  130. 130. Saha A. Kumar S. Kumar A. Influence of pineapple leaf particulate on mechanical, thermal and biodegradation characteristics of pineapple leaf fiber reinforced polymer composite J. Polym. Res. 2021 28 1 23 10.1007/s10965-021-02435-y 

  131. 131. Chimeni D.Y. Toupe J.L. Dubois C. Rodrigue D. Effect of hemp surface modification on the morphological and tensile properties of linear medium density polyethylene (LMDPE) composites Compos. Interfaces 2016 23 405 421 10.1080/09276440.2016.1144163 

  132. 132. Balla V.K. Kate K.H. Satyavolu J. Singh P. Tadimeti J.G.D. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects Compos. Part B Eng. 2019 174 106956 10.1016/j.compositesb.2019.106956 

  133. 133. Mahmud S. Hasan K. Jahid M. Mohiuddin K. Zhang R. Zhu J. Comprehensive review on plant fiber-reinforced polymeric biocomposites J. Mater. Sci. 2021 56 7231 7264 10.1007/s10853-021-05774-9 

  134. 134. DiBenedetto A. Tailoring of interfaces in glass fiber reinforced polymer composites: A review Mater. Sci. Eng. A 2001 302 74 82 10.1016/S0921-5093(00)01357-5 

  135. 135. Zhang X.X. Lu C.H. Liang M. Preparation of rubber composites from ground tire rubber reinforced with waste-tire fiber through mechanical milling J. Appl. Polym. Sci. 2007 103 4087 4094 10.1002/app.25510 

  136. 136. Marconi M. Landi D. Meo I. Germani M. Reuse of tires textile fibers in plastic compounds: Is this scenario environmentally sustainable? Procedia Cirp 2018 69 944 949 10.1016/j.procir.2017.11.074 

  137. 137. Anthony W.S. Separation of Crumb and Fiber in Tire Recycling Operations ASAE Annual Meeting American Society of Agricultural and Biological Engineers St. Joseph, MI, USA 2005 

  138. 138. Fazli A. Rodrigue D. Effect of ground tire rubber (GTR) particle size and content on the morphological and mechanical properties of recycled high-density polyethylene (rHDPE)/GTR blends Recycling 2021 6 44 10.3390/recycling6030044 

  139. 139. Fazli A. Rodrigue D. Thermoplastic elastomers based on recycled high-density polyethylene/ground tire rubber/ethylene vinyl acetate: Effect of ground tire rubber regeneration on morphological and mechanical properties J. Thermoplast. Compos. Mater. 2022 35 08927057221095388 10.1177/08927057221095388 

  140. 140. Moghaddamzadeh S. Rodrigue D. The effect of polyester recycled tire fibers mixed with ground tire rubber on polyethylene composites. Part II: Physico-mechanical analysis Prog. Rubber Plast. Recycl. 2018 34 128 142 10.1177/1477760618798268 

  141. 141. Ferreira C.T. Perez C.A. Hirayama D. Saron C. Recycling of polyamide (PA) from scrap tires as composites and blends J. Environ. Chem. Eng. 2013 1 762 767 10.1016/j.jece.2013.07.016 

  142. 142. Fazli A. Rodrigue D. Thermoplastic Elastomer based on Recycled HDPE/Ground Tire Rubber Interfacially Modified with an Elastomer: Effect of Mixing Sequence and Elastomer Type/Content Polym. Plast. Technol. Eng. 2022 61 1021 1038 10.1080/25740881.2022.2033770 

  143. 143. Fazli A. Stevanovic T. Rodrigue D. Recycled HDPE/Natural Fiber Composites Modified with Waste Tire Rubber: A Comparison between Injection and Compression Molding Polymers 2022 14 3197 10.3390/polym14153197 35956711 

  144. 144. Fazli A. Rodrigue D. Morphological and Mechanical Properties of Thermoplastic Elastomers Based on Recycled High Density Polyethylene and Recycled Natural Rubber Int. Polym. Proc. 2021 36 156 164 10.1515/ipp-2020-4006 

  145. 145. Simon-Stőger L. Varga C. PE-contaminated industrial waste ground tire rubber: How to transform a handicapped resource to a valuable one Waste Manag. 2021 119 111 121 10.1016/j.wasman.2020.09.037 33065334 

  146. 146. Moghaddamzadeh S. Rodrigue D. Rheological characterization of polyethylene/polyester recycled tire fibers/ground tire rubber composites J. Appl. Polym. Sci. 2018 135 46563 46571 10.1002/app.46563 

  147. 147. Verma D. Goh K.L. Vimal V. Interfacial Studies of Natural Fiber-Reinforced Particulate Thermoplastic Composites and Their Mechanical Properties J. Nat. Fibers 2020 19 2299 2326 10.1080/15440478.2020.1808147 

  148. 148. Kakroodi A.R. Bainier J. Rodrigue D. Mechanical and morphological properties of flax fiber reinforced high density polyethylene/recycled rubber composites Int. Polym. Proc. 2012 27 196 204 10.3139/217.2473 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로