$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Suppression of (0001) plane emission in GaInN/GaN multi-quantum nanowires for efficient micro-LEDs 원문보기

Nanophotonics, v.11 no.21 = no.21, 2022년, pp.4793 - 4804  

Katsuro, Sae (Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, 468-8502, Japan) ,  Lu, Weifang (Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, 468-8502, Japan) ,  Ito, Kazuma (Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, 468-8502, Japan) ,  Nakayama, Nanami (Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, 468-8502, Japan) ,  Yamamura, Shiori (Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, 468-8502, Japan) ,  Jinno, Yukimi (Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, 468-8502, Japan) ,  Inaba, Soma (Department of Ma) ,  Shima, Ayaka ,  Sone, Naoki ,  Han, Dong-Pyo ,  Huang, Kai ,  Iwaya, Motoaki ,  Takeuchi, Tetsuya ,  Kamiyama, Satoshi

Abstract AI-Helper 아이콘AI-Helper

AbstractGaInN/GaN multi-quantum-shell (MQS) nanowires (NWs) are gaining increasing attention as promising materials for developing highly efficient long-wavelength micro-light emitting diodes (LEDs). To improve the emission properties in GaInN/GaN MQS NWs, it is necessary to suppress the emission fr...

주제어

참고문헌 (51)

  1. [1] F. Templier, “GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” J. Soc. Inf. Disp. , vol. 24, pp. 669-675, 2016. https://doi.org/10.1002/jsid.516 . Templier F. GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems J. Soc. Inf. Disp. 24 669 675 2016 https://doi.org/10.1002/jsid.516 

  2. [2] Y. Huang, E. L. Hsiang, M. Y. Deng, and S. T. Wu, “Mini-LED, Micro-LED and OLED displays: present status and future perspectives,” Light Sci. Appl. , vol. 9, p. 105, 2020. https://doi.org/10.1038/s41377-020-0341-9 . Huang Y. Hsiang E. L. Deng M. Y. Wu S. T. Mini-LED, Micro-LED and OLED displays: present status and future perspectives Light Sci. Appl. 9 105 2020 https://doi.org/10.1038/s41377-020-0341-9 

  3. [3] J. J. Wierer and N. Tansu, “III-Nitride micro-LEDs for efficient emissive displays,” Laser Photonics Rev. , vol. 13, p. 1900141, 2019. https://doi.org/10.1002/lpor.201900141 . Wierer J. J. Tansu N. III-Nitride micro-LEDs for efficient emissive displays Laser Photonics Rev. 13 1900141 2019 https://doi.org/10.1002/lpor.201900141 

  4. [4] J. Y. Lin and H. X. Jiang, “Development of microLED,” Appl. Phys. Lett. , vol. 116, p. 100502, 2020. https://doi.org/10.1063/1.5145201 . Lin J. Y. Jiang H. X. Development of microLED Appl. Phys. Lett. 116 100502 2020 https://doi.org/10.1063/1.5145201 

  5. [5] S. S. Konoplev, K. A. Bulashevich, and S. Y. Karpov, “From large-size to micro-LEDs: scaling trends revealed by modeling,” Phys. Status Solidi (a) , vol. 215, p. 1700508, 2018. https://doi.org/10.1002/pssa.201700508 . Konoplev S. S. Bulashevich K. A. Karpov S. Y. From large-size to micro-LEDs: scaling trends revealed by modeling Phys. Status Solidi (a) 215 1700508 2018 https://doi.org/10.1002/pssa.201700508 

  6. [6] K. A. Bulashevich and S. Y. Karpov, “Impact of surface recombination on efficiency of III-nitride light-emitting diodes,” Phys. Status Solidi RRL , vol. 10, pp. 480-484, 2016. https://doi.org/10.1002/pssr.201600059 . Bulashevich K. A. Karpov S. Y. Impact of surface recombination on efficiency of III-nitride light-emitting diodes Phys. Status Solidi RRL 10 480 484 2016 https://doi.org/10.1002/pssr.201600059 

  7. [7] F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, and F. Templier, “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application,” J. Lumin. , vol. 191, pp. 112-116, 2017. https://doi.org/10.1016/j.jlumin.2016.09.052 . Olivier F. Tirano S. Dupré L. Aventurier B. Largeron C. Templier F. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application J. Lumin. 191 112 116 2017 https://doi.org/10.1016/j.jlumin.2016.09.052 

  8. [8] F. P. Massabuau, M. J. Davies, F. Oehler, et al.., “The impact of trench defects in InGaN/GaN light emitting diodes and implications for the “green gap” problem,” Appl. Phys. Lett. , vol. 105, p. 112110, 2014. https://doi.org/10.1063/1.4896279 . Massabuau F. P. Davies M. J. Oehler F. The impact of trench defects in InGaN/GaN light emitting diodes and implications for the “green gap” problem Appl. Phys. Lett. 105 112110 2014 https://doi.org/10.1063/1.4896279 

  9. [9] Y. Zhao, H. Fu, G. T. Wang, and S. Nakamura, “Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes,” Adv. Opt. Photonics , vol. 10, pp. 246-308, 2018. https://doi.org/10.1364/aop.10.000246 . Zhao Y. Fu H. Wang G. T. Nakamura S. Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes Adv. Opt. Photonics 10 246 308 2018 https://doi.org/10.1364/aop.10.000246 

  10. [10] D. P. Han, K. Yamamoto, S. Ishimoto, et al.., “Determination of internal quantum efficiency in GaInN-based light-emitting diode under electrical injection: carrier recombination dynamics analysis,” Appl. Phys. Express , vol. 12, p. 032006, 2019. https://doi.org/10.7567/1882-0786/aafca2 . Han D. P. Yamamoto K. Ishimoto S. Determination of internal quantum efficiency in GaInN-based light-emitting diode under electrical injection: carrier recombination dynamics analysis Appl. Phys. Express 12 032006 2019 https://doi.org/10.7567/1882-0786/aafca2 

  11. [11] T. Takeuchi, S. Sota, M. Katsuragawa, et al.., “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. , vol. 36, p. L382, 1997. https://doi.org/10.1143/jjap.36.l382 . Takeuchi T. Sota S. Katsuragawa M. Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells Jpn. J. Appl. Phys. 36 L382 1997 https://doi.org/10.1143/jjap.36.l382 

  12. [12] T. Takeuchi, C. Wetzel, S. Yamaguchi, et al.., “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,” Appl. Phys. Lett. , vol. 73, pp. 1691-1693, 1998. https://doi.org/10.1063/1.122247 . Takeuchi T. Wetzel C. Yamaguchi S. Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect Appl. Phys. Lett. 73 1691 1693 1998 https://doi.org/10.1063/1.122247 

  13. [13] T. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. , vol. 39, p. 413, 2000. https://doi.org/10.1143/jjap.39.413 . Takeuchi T. Amano H. Akasaki I. Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells Jpn. J. Appl. Phys. 39 413 2000 https://doi.org/10.1143/jjap.39.413 

  14. [14] S. Kamiyama, W. Lu, T. Takeuchi, M. Iwaya, and I. Akasaki, “Growth and characterization of core-shell structures consisting of GaN nanowire core and GaInN/GaN multi-quantum shell,” ECS J. Solid State Sci. Technol. , vol. 9, p. 015007, 2019. https://doi.org/10.1149/2.0252001jss . Kamiyama S. Lu W. Takeuchi T. Iwaya M. Akasaki I. Growth and characterization of core-shell structures consisting of GaN nanowire core and GaInN/GaN multi-quantum shell ECS J. Solid State Sci. Technol. 9 015007 2019 https://doi.org/10.1149/2.0252001jss 

  15. [15] K. Ito, W. Lu, S. Katsuro, et al., “Identification of multi-color emission from coaxial GaInN/GaN multiple-quantum-shell nanowire LEDs,” Nanoscale Adv. , vol. 4, pp. 102-110, 2021. https://doi.org/10.1039/d1na00299f . Ito K. Lu W. Katsuro S. Identification of multi-color emission from coaxial GaInN/GaN multiple-quantum-shell nanowire LEDs Nanoscale Adv. 4 102 110 2021 https://doi.org/10.1039/d1na00299f 

  16. [16] W. Lu, K. Ito, N. Sone, et al.., “Color-tunable emission in coaxial GaInN/GaN multiple quantum shells grown on three-dimensional nanostructures,” Appl. Surf. Sci. , vol. 539, p. 148279, 2021. https://doi.org/10.1016/j.apsusc.2020.148279 . Lu W. Ito K. Sone N. Color-tunable emission in coaxial GaInN/GaN multiple quantum shells grown on three-dimensional nanostructures Appl. Surf. Sci. 539 148279 2021 https://doi.org/10.1016/j.apsusc.2020.148279 

  17. [17] W. Lu, Y. Miyamoto, R. Okuda, et al.., “Correlation between optical and structural characteristics in coaxial GaInN/GaN multiple quantum shell nanowires with AlGaN spacers,” ACS Appl. Mater. Interfaces , vol. 12, pp. 51082-51091, 2020. https://doi.org/10.1021/acsami.0c15366 . Lu W. Miyamoto Y. Okuda R. Correlation between optical and structural characteristics in coaxial GaInN/GaN multiple quantum shell nanowires with AlGaN spacers ACS Appl. Mater. Interfaces 12 51082 51091 2020 https://doi.org/10.1021/acsami.0c15366 

  18. [18] W. Lu, N. Sone, N. Goto, et al.., “Effect of AlGaN undershell on the cathodoluminescence properties of coaxial GaInN/GaN multiple-quantum-shells nanowires,” Nanoscale , vol. 11, pp. 18746-18757, 2019. https://doi.org/10.1039/c9nr07271c . Lu W. Sone N. Goto N. Effect of AlGaN undershell on the cathodoluminescence properties of coaxial GaInN/GaN multiple-quantum-shells nanowires Nanoscale 11 18746 18757 2019 https://doi.org/10.1039/c9nr07271c 

  19. [19] M. Nami, A. Rashidi, M. Monavarian, et al.., “Electrically injected GHz-class GaN/inGaN core-shell nanowire-based μLEDs: carrier dynamics and nanoscale homogeneity,” ACS Photonics , vol. 6, pp. 1618-1625, 2019. https://doi.org/10.1021/acsphotonics.9b00639 . Nami M. Rashidi A. Monavarian M. Electrically injected GHz-class GaN/inGaN core-shell nanowire-based μLEDs: carrier dynamics and nanoscale homogeneity ACS Photonics 6 1618 1625 2019 https://doi.org/10.1021/acsphotonics.9b00639 

  20. [20] R. Chaji, E. Fathi, and A. Zamani, 19-15: Invited Paper: Low-Cost Micro-LED Displays for All Applications, SID Symposium Digest of Technical Papers , Wiley Online Library, 2017, pp. 264-267. Chaji R. Fathi E. Zamani A. 19-15: Invited Paper: Low-Cost Micro-LED Displays for All Applications, SID Symposium Digest of Technical Papers Wiley Online Library 2017 264 267 

  21. [21] K. Ding, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “Micro-LEDs, a manufacturability perspective,” Appl. Sci. , vol. 9, p. 1206, 2019. https://doi.org/10.3390/app9061206 . Ding K. Avrutin V. Izyumskaya N. Özgür Ü. Morkoç H. Micro-LEDs, a manufacturability perspective Appl. Sci. 9 1206 2019 https://doi.org/10.3390/app9061206 

  22. [22] H. Choi, C. Jeon, M. Dawson, P. Edwards, and R. Martin, “Fabrication and performance of parallel-addressed InGaN micro-LED arrays,” IEEE Photonics Technol. Lett. , vol. 15, pp. 510-512, 2003. https://doi.org/10.1109/lpt.2003.809257 . Choi H. Jeon C. Dawson M. Edwards P. Martin R. Fabrication and performance of parallel-addressed InGaN micro-LED arrays IEEE Photonics Technol. Lett. 15 510 512 2003 https://doi.org/10.1109/lpt.2003.809257 

  23. [23] F. Xu, Y. Tan, Z. Xie, and B. Zhang, “Implantation energy-and size-dependent light output of enhanced-efficiency micro-LED arrays fabricated by ion implantation,” Opt. Express , vol. 29, pp. 7757-7766, 2021. https://doi.org/10.1364/oe.421272 . Xu F. Tan Y. Xie Z. Zhang B. Implantation energy-and size-dependent light output of enhanced-efficiency micro-LED arrays fabricated by ion implantation Opt. Express 29 7757 7766 2021 https://doi.org/10.1364/oe.421272 

  24. [24] S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. , vol. 6, pp. 1808-1811, 2006. https://doi.org/10.1021/nl060553t . Hersee S. D. Sun X. Wang X. The controlled growth of GaN nanowires Nano Lett. 6 1808 1811 2006 https://doi.org/10.1021/nl060553t 

  25. [25] C. Mounir, T. Schimpke, G. Rossbach, A. Avramescu, M. Strassburg, and U. T. Schwarz, “Polarization-resolved micro-photoluminescence investigation of InGaN/GaN core-shell microrods,” J. Appl. Phys. , vol. 121, p. 025701, 2017. https://doi.org/10.1063/1.4973899 . Mounir C. Schimpke T. Rossbach G. Avramescu A. Strassburg M. Schwarz U. T. Polarization-resolved micro-photoluminescence investigation of InGaN/GaN core-shell microrods J. Appl. Phys. 121 025701 2017 https://doi.org/10.1063/1.4973899 

  26. [26] W. Lim, H. Kum, Y. J. Choi, et al.., “SiO2 nanohole arrays with high aspect ratio for InGaN/GaN nanorod-based phosphor-free white light-emitting-diodes,” J. Vac. Sci, Technol. B , vol. 34, p. 042204, 2016. https://doi.org/10.1116/1.4959027 . Lim W. Kum H. Choi Y. J. SiO2 nanohole arrays with high aspect ratio for InGaN/GaN nanorod-based phosphor-free white light-emitting-diodes J. Vac. Sci, Technol. B 34 042204 2016 https://doi.org/10.1116/1.4959027 

  27. [27] H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. , vol. 96, p. 231104, 2010. https://doi.org/10.1063/1.3443734 . Sekiguchi H. Kishino K. Kikuchi A. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate Appl. Phys. Lett. 96 231104 2010 https://doi.org/10.1063/1.3443734 

  28. [28] K. Kishino, A. Yanagihara, K. Ikeda, and K. Yamano, “Monolithic integration of four-colour InGaN-based nanocolumn LEDs,” Electron. Lett. , vol. 51, pp. 852-854, 2015. https://doi.org/10.1049/el.2015.0770 . Kishino K. Yanagihara A. Ikeda K. Yamano K. Monolithic integration of four-colour InGaN-based nanocolumn LEDs Electron. Lett. 51 852 854 2015 https://doi.org/10.1049/el.2015.0770 

  29. [29] K. Ito, W. Lu, N. Sone, et al.., “Development of monolithically grown coaxial GaInN/GaN multiple quantum shell nanowires by MOCVD,” Nanomaterials , vol. 10, p. 1354, 2020. https://doi.org/10.3390/nano10071354 . Ito K. Lu W. Sone N. Development of monolithically grown coaxial GaInN/GaN multiple quantum shell nanowires by MOCVD Nanomaterials 10 1354 2020 https://doi.org/10.3390/nano10071354 

  30. [30] M. Sheen, Y. Ko, D. U. Kim, et al.., “Highly efficient blue InGaN nanoscale light-emitting diodes,” Nature , vol. 608, pp. 56-61, 2022. https://doi.org/10.1038/s41586-022-04933-5 . Sheen M. Ko Y. Kim D. U. Highly efficient blue InGaN nanoscale light-emitting diodes Nature 608 56 61 2022 https://doi.org/10.1038/s41586-022-04933-5 

  31. [31] N. Sone, A. Suzuki, H. Murakami, et al.., “Improved uniform current injection into core-shell-type GaInN nanowire light-emitting diodes by optimizing growth condition and indium-tin-oxide deposition,” Phys. Status Solidi (a) , vol. 217, p. 1900715, 2020. https://doi.org/10.1002/pssa.201900715 . Sone N. Suzuki A. Murakami H. Improved uniform current injection into core-shell-type GaInN nanowire light-emitting diodes by optimizing growth condition and indium-tin-oxide deposition Phys. Status Solidi (a) 217 1900715 2020 https://doi.org/10.1002/pssa.201900715 

  32. [32] S. Katsuro, W. Lu, K. Ito, et al.., “Emission characteristics of GaInN/GaN multiple quantum shell nanowire-based LEDs with different p-GaN growth conditions,” Nanophotonics , vol. 10, pp. 3441-3450, 2021. https://doi.org/10.1515/nanoph-2021-0210 . Katsuro S. Lu W. Ito K. Emission characteristics of GaInN/GaN multiple quantum shell nanowire-based LEDs with different p-GaN growth conditions Nanophotonics 10 3441 3450 2021 https://doi.org/10.1515/nanoph-2021-0210 

  33. [33] K. Ito, W. Lu, S. Katsuro, et al.., “Identification of multi-color emission from coaxial GaInN/GaN multiple-quantum-shell nanowire LEDs,” Nanoscale Adv. , vol. 4, pp. 102-110, 2022. https://doi.org/10.1039/d1na00299f . Ito K. Lu W. Katsuro S. Identification of multi-color emission from coaxial GaInN/GaN multiple-quantum-shell nanowire LEDs Nanoscale Adv. 4 102 110 2022 https://doi.org/10.1039/d1na00299f 

  34. [34] W. Lu, N. Nakayama, K. Ito, et al.., “Morphology control and crystalline quality of p-type GaN shells grown on coaxial GaInN/GaN multiple quantum shell nanowires,” ACS Appl. Mater. Interfaces , vol. 13, p. 54486, 2021. https://doi.org/10.1021/acsami.1c13947 . Lu W. Nakayama N. Ito K. Morphology control and crystalline quality of p-type GaN shells grown on coaxial GaInN/GaN multiple quantum shell nanowires ACS Appl. Mater. Interfaces 13 54486 2021 https://doi.org/10.1021/acsami.1c13947 

  35. [35] K. Okuno, K. Mizutani, K. Iida, et al.., “MOVPE growth of Si-doped GaN cap layers embedding GaN nanowires with multiple-quantum shells,” J. Cryst. Growth , vol. 578, p. 126423, 2022. https://doi.org/10.1016/j.jcrysgro.2021.126423 . Okuno K. Mizutani K. Iida K. MOVPE growth of Si-doped GaN cap layers embedding GaN nanowires with multiple-quantum shells J. Cryst. Growth 578 126423 2022 https://doi.org/10.1016/j.jcrysgro.2021.126423 

  36. [36] K. Okuno, K. Mizutani, K. Iida, et al.., “Growth defects in inGaN-based multiple-quantum-shell nanowires with Si-doped GaN cap layers and tunnel junctions,” Phys. Status Solidi (b) , vol. 259, no. 6, p. 2100221, 2022. https://doi.org/10.1002/pssb.202100221 . Okuno K. Mizutani K. Iida K. Growth defects in inGaN-based multiple-quantum-shell nanowires with Si-doped GaN cap layers and tunnel junctions Phys. Status Solidi (b) 259 6 2100221 2022 https://doi.org/10.1002/pssb.202100221 

  37. [37] Y. J. Hong, C. H. Lee, A. Yoon, et al.., “Visible-color-tunable light-emitting diodes,” Adv. Mater. , vol. 23, pp. 3284-3288, 2011. https://doi.org/10.1002/adma.201100806 . Hong Y. J. Lee C. H. Yoon A. Visible-color-tunable light-emitting diodes Adv. Mater. 23 3284 3288 2011 https://doi.org/10.1002/adma.201100806 

  38. [38] Y. Robin, S. Y. Bae, T. V. Shubina, et al.., “Insight into the performance of multi-color InGaN/GaN nanorod light emitting diodes,” Sci. Rep. , vol. 8, p. 7311, 2018. https://doi.org/10.1038/s41598-018-25473-x . Robin Y. Bae S. Y. Shubina T. V. Insight into the performance of multi-color InGaN/GaN nanorod light emitting diodes Sci. Rep. 8 7311 2018 https://doi.org/10.1038/s41598-018-25473-x 

  39. [39] Y. Miyamoto, W. Lu, N. Sone, et al.., “Crystal growth and characterization of n-GaN in a multiple quantum shell nanowire-based light emitter with a tunnel junction,” ACS Appl. Mater. Interfaces , vol. 13, pp. 37883-37892, 2021. https://doi.org/10.1021/acsami.1c09591 . Miyamoto Y. Lu W. Sone N. Crystal growth and characterization of n-GaN in a multiple quantum shell nanowire-based light emitter with a tunnel junction ACS Appl. Mater. Interfaces 13 37883 37892 2021 https://doi.org/10.1021/acsami.1c09591 

  40. [40] Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1− xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,” J. Cryst. Growth , vol. 144, pp. 133-140, 1994. https://doi.org/10.1016/0022-0248(94)90448-0 . Kato Y. Kitamura S. Hiramatsu K. Sawaki N. Selective growth of wurtzite GaN and AlxGa1− xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy J. Cryst. Growth 144 133 140 1994 https://doi.org/10.1016/0022-0248(94)90448-0 

  41. [41] Y. T. Lin, T. W. Yeh, and P. D. Dapkus, “Mechanism of selective area growth of GaN nanorods by pulsed mode metalorganic chemical vapor deposition,” Nanotechnology , vol. 23, p. 465601, 2012. https://doi.org/10.1088/0957-4484/23/46/465601 . Lin Y. T. Yeh T. W. Dapkus P. D. Mechanism of selective area growth of GaN nanorods by pulsed mode metalorganic chemical vapor deposition Nanotechnology 23 465601 2012 https://doi.org/10.1088/0957-4484/23/46/465601 

  42. [42] D. Li, H. Chen, H. Yu, H. Jia, Q. Huang, and J. Zhou, “Dependence of leakage current on dislocations in GaN-based light-emitting diodes,” J. Appl. Phys. , vol. 96, pp. 1111-1114, 2004. https://doi.org/10.1063/1.1763234 . Li D. Chen H. Yu H. Jia H. Huang Q. Zhou J. Dependence of leakage current on dislocations in GaN-based light-emitting diodes J. Appl. Phys. 96 1111 1114 2004 https://doi.org/10.1063/1.1763234 

  43. [43] S. Zhou, J. Lv, Y. Wu, Y. Zhang, C. Zheng, and S. Liu, “Reverse leakage current characteristics of InGaN/GaN multiple quantum well ultraviolet/blue/green light-emitting diodes,” Jpn. J. Appl. Phys. , vol. 57, p. 051003, 2018. https://doi.org/10.7567/jjap.57.051003 . Zhou S. Lv J. Wu Y. Zhang Y. Zheng C. Liu S. Reverse leakage current characteristics of InGaN/GaN multiple quantum well ultraviolet/blue/green light-emitting diodes Jpn. J. Appl. Phys. 57 051003 2018 https://doi.org/10.7567/jjap.57.051003 

  44. [44] M. Lee, H. U. Lee, K. M. Song, and J. Kim, “Significant improvement of reverse leakage current characteristics of Si-based homoepitaxial InGaN/GaN blue light emitting diodes,” Sci. Rep. , vol. 9, pp. 1-6, 2019. https://doi.org/10.1038/s41598-019-38664-x . Lee M. Lee H. U. Song K. M. Kim J. Significant improvement of reverse leakage current characteristics of Si-based homoepitaxial InGaN/GaN blue light emitting diodes Sci. Rep. 9 1 6 2019 https://doi.org/10.1038/s41598-019-38664-x 

  45. [45] H. M. Kim, C. Huh, S. W. Kim, N. M. Park, and S. J. Park, “Suppression of leakage current in InGaN/GaN multiple-quantum well LEDs by N 2 O Plasma Treatment,” Electrochem. Solid State Lett. , vol. 7, p. G241, 2004. https://doi.org/10.1149/1.1799957 . Kim H. M. Huh C. Kim S. W. Park N. M. Park S. J. Suppression of leakage current in InGaN/GaN multiple-quantum well LEDs by N 2 O Plasma Treatment Electrochem. Solid State Lett. 7 G241 2004 https://doi.org/10.1149/1.1799957 

  46. [46] M. S. Wong, D. Hwang, A. I. Alhassan, et al.., “High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition,” Opt Express , vol. 26, pp. 21324-21331, 2018. https://doi.org/10.1364/oe.26.021324 . Wong M. S. Hwang D. Alhassan A. I. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition Opt Express 26 21324 21331 2018 https://doi.org/10.1364/oe.26.021324 

  47. [47] H. Yu, M. H. Memon, H. Jia, et al.., “A 10 × 10 deep ultraviolet light-emitting micro-LED array,” J. Semicond. , vol. 43, p. 062801, 2022. https://doi.org/10.1088/1674-4926/43/6/062801 . Yu H. Memon M. H. Jia H. A 10 × 10 deep ultraviolet light-emitting micro-LED array J. Semicond. 43 062801 2022 https://doi.org/10.1088/1674-4926/43/6/062801 

  48. [48] H. Yu, M. H. Memon, D. Wang, et al.., “AlGaN-based deep ultraviolet micro-LED emitting at 275 nm,” Opt. Lett. , vol. 46, pp. 3271-3274, 2021. https://doi.org/10.1364/ol.431933 . Yu H. Memon M. H. Wang D. AlGaN-based deep ultraviolet micro-LED emitting at 275 nm Opt. Lett. 46 3271 3274 2021 https://doi.org/10.1364/ol.431933 

  49. [49] Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, “Ultra-small InGaN green micro-light-emitting diodes fabricated by selective passivation of p-GaN,” Opt. Lett. , vol. 46, pp. 5092-5095, 2021. https://doi.org/10.1364/ol.438009 . Zhuang Z. Iida D. Velazquez-Rizo M. Ohkawa K. Ultra-small InGaN green micro-light-emitting diodes fabricated by selective passivation of p-GaN Opt. Lett. 46 5092 5095 2021 https://doi.org/10.1364/ol.438009 

  50. [50] T. W. Yeh, Y. T. Lin, L. S. Stewart, et al.., “InGaN/GaN multiple quantum wells grown on nonpolar facets of vertical GaN nanorod arrays,” Nano Lett. , vol. 12, pp. 3257-3262, 2012. https://doi.org/10.1021/nl301307a . Yeh T. W. Lin Y. T. Stewart L. S. InGaN/GaN multiple quantum wells grown on nonpolar facets of vertical GaN nanorod arrays Nano Lett. 12 3257 3262 2012 https://doi.org/10.1021/nl301307a 

  51. [51] M. Tian, H. Yu, M. H. Memon, et al.., “Enhanced light extraction of the deep-ultraviolet micro-LED via rational design of chip sidewall,” Opt. Lett. , vol. 46, pp. 4809-4812, 2021. https://doi.org/10.1364/ol.441285 . Tian M. Yu H. Memon M. H. Enhanced light extraction of the deep-ultraviolet micro-LED via rational design of chip sidewall Opt. Lett. 46 4809 4812 2021 https://doi.org/10.1364/ol.441285 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로