최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Energy : technologies, resources, reserves, demands, impact, conservation, management, policy, v.293, 2024년, pp.130706 -
Wang, Yang , Sun, Jingyun , Liu, Qianqian , Chen, Longwei , Gu, Mingyan , Liu, Dongming , Huang, Xiangyong , Wang, Shuang
초록이 없습니다.
Prog Energ Combust Wang 74 152 2019 10.1016/j.pecs.2019.05.003 Soot formation in laminar counterflow flames
Combust Flame Hu 236 2022 10.1016/j.combustflame.2021.111760 Morphological and nanostructure characteristics of soot particles emitted from a jet-stirred reactor burning aviation fuel
J Energy Storage Tarhan 40 2021 10.1016/j.est.2021.102676 A study on hydrogen, the clean energy of the future: hydrogen storage methods
Combust Flame Gu 166 216 2016 10.1016/j.combustflame.2016.01.023 Effects of simultaneous hydrogen enrichment and carbon dioxide dilution of fuel on soot formation in an axisymmetric coflow laminar ethylene/air diffusion flame
Int J Hydrogen Energy Wang 46 31400 2021 10.1016/j.ijhydene.2021.07.011 A review of the effects of hydrogen, carbon dioxide, and water vapor addition on soot formation in hydrocarbon flames
Energy Rep Lin 7 4064 2021 10.1016/j.egyr.2021.06.087 Instantaneous hydrogen production from ammonia by non-thermal arc plasma combining with catalyst
Fuel Zhang 341 2023 10.1016/j.fuel.2023.127633 Effect of ammonia on the soot surface characteristics in ammonia/ethylene co-flow diffusion flames
Fuel Zhang 331 2023 10.1016/j.fuel.2022.125623 Effects of ammonia addition on soot formation in ethylene laminar diffusion flames. Part 2. Further insights into soot inception, growth and oxidation
Combust Flame Ren 241 2022 10.1016/j.combustflame.2021.111958 Effects of NH3 addition on polycyclic aromatic hydrocarbon and soot formation in C2H4 co-flow diffusion flames
Proc Combust Inst Kobayashi 37 109 2019 10.1016/j.proci.2018.09.029 Science and technology of ammonia combustion
Combust Flame Okafor 187 185 2018 10.1016/j.combustflame.2017.09.002 Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames
Energy Li 213 2020 10.1016/j.energy.2020.118868 Effects of ammonia addition on PAH formation in laminar premixed ethylene flames based on laser-induced fluorescence measurement
Prog Energ Combust Ju 48 21 2015 10.1016/j.pecs.2014.12.002 Plasma assisted combustion: dynamics and chemistry
Prog Energ Combust Starikovskiy 39 61 2013 10.1016/j.pecs.2012.05.003 Plasma-assisted ignition and combustion
Int J Hydrogen Energy Radwan 52 819 2024 10.1016/j.ijhydene.2023.10.087 Plasma assisted NH3 combustion and NOx reduction technologies: principles, challenges and prospective
Combust Flame Massa 184 208 2017 10.1016/j.combustflame.2017.06.008 Plasma-combustion coupling in a dielectric-barrier discharge actuated fuel jet
Combust Flame Tang 231 2021 10.1016/j.combustflame.2021.111483 Extension of flammability and stability limits of swirling premixed flames by AC powered gliding arc discharges
Renew Sustain Energy Rev Talebizadeh 40 886 2014 10.1016/j.rser.2014.07.194 The role of non-thermal plasma technique in NOx treatment: a review
Combust Flame Choe 228 430 2021 10.1016/j.combustflame.2021.02.016 Plasma assisted ammonia combustion: simultaneous NOx reduction and flame enhancement
Proc Combust Inst Faingold 38 6661 2021 10.1016/j.proci.2020.08.033 A numerical investigation of NH3/O2/He ignition limits in a non-thermal plasma
Energy Fuels Shioyoke 32 3824 2018 10.1021/acs.energyfuels.7b02733 Numerical investigation on effects of nonequilibrium plasma on laminar burning velocity of ammonia flame
Fuel Tang 313 2022 10.1016/j.fuel.2021.122674 Flammability enhancement of swirling ammonia/air combustion using AC powered gliding arc discharges
Fuel Lin 319 2022 10.1016/j.fuel.2022.123818 Controllable NO emission and high flame performance of ammonia combustion assisted by non-equilibrium plasma
J Phys Appl Phys Choe 51 2018 10.1088/1361-6463/aad4dc Blowoff hysteresis, flame morphology and the effect of plasma in a swirling flow
J Phys Chem A van Duin 105 9396 2001 10.1021/jp004368u ReaxFF: a reactive force field for hydrocarbons
Int J Hydrogen Energy Wang 48 8696 2023 10.1016/j.ijhydene.2022.12.001 Soot growth mechanism in C2H2 combustion with H2 addition: a reactive molecular dynamics study
Energy Fuels Zhang 36 12350 2022 10.1021/acs.energyfuels.2c02206 Analysis of inhibitory mechanisms of ammonia addition on soot formation: a combined ReaxFF MD simulations and experimental study
Int J Hydrogen Energy Wang 46 36557 2021 10.1016/j.ijhydene.2021.08.125 Formation of soot particles in methane and ethylene combustion: a reactive molecular dynamics study
Fuel Zheng 233 867 2018 10.1016/j.fuel.2018.06.133 Investigation of N behavior during coal pyrolysis and oxidation using ReaxFF molecular dynamics
Fuel Wang 331 2023 10.1016/j.fuel.2022.125806 Exploring reaction mechanism for ammonia/methane combustion via reactive molecular dynamics simulations
Fuel Kwon 262 2020 10.1016/j.fuel.2019.116545 Numerical simulations of yield-based sooting tendencies of aromatic fuels using ReaxFF molecular dynamics
ChemInform Mortier 108 4315 1986 Electronegativity equalization method for the calculation of atomic charges in molecules
J Phys Chem A Chenoweth 112 1040 2008 10.1021/jp709896w ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation
Fuel Bhoi 136 326 2014 10.1016/j.fuel.2014.07.058 Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF
Combust Sci Technol Miller 34 149 2007 10.1080/00102208308923691 Kinetic modeling of the oxidation of ammonia in flames
Carbon Senda 142 311 2019 10.1016/j.carbon.2018.10.026 Analyses of oxidation process for isotropic pitch-based carbon fibers using model compounds
J Anal Appl Pyrol Wang 155 2021 10.1016/j.jaap.2021.105045 High-temperature pyrolysis of isoprenoid hydrocarbon p-menthane using ReaxFF molecular dynamics simulation
Fuel Lele 297 2021 10.1016/j.fuel.2021.120724 ReaxFF molecular dynamics study on pyrolysis of bicyclic compounds for aviation fuel
J Phys Chem A Zhang 113 10619 2009 10.1021/jp901353a Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-Triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations
J Phys Chem A Chen 121 2069 2017 10.1021/acs.jpca.6b12367 High-temperature and high-pressure pyrolysis of hexadecane: molecular dynamic simulation based on reactive force field (ReaxFF)
J Energy Inst Wang 100 177 2022 10.1016/j.joei.2021.11.007 Analysis of soot formation of CH4 and C2H4 with H2 addition via ReaxFF molecular dynamics and pyrolysis-gas chromatography/mass spectrometry
npj Comput Mater Senftle 2 2016 10.1038/npjcompumats.2015.11 The ReaxFF reactive force-field: development, applications and future directions
Ind Eng Chem Res Monnery 40 144 2001 10.1021/ie990764r Ammonia pyrolysis and oxidation in the claus furnace
Prog Energy Combust Miller 15 287 1989 10.1016/0360-1285(89)90017-8 Mechanism and modeling of nitrogen chemistry in combustion
Energy Fuels Xiao 31 8631 2017 10.1021/acs.energyfuels.7b00709 Modeling combustion of ammonia/hydrogen fuel blends under gas turbine conditions
Prog Energ Combust Glarborg 67 31 2018 10.1016/j.pecs.2018.01.002 Modeling nitrogen chemistry in combustion
Fuel Song 181 358 2016 10.1016/j.fuel.2016.04.100 Ammonia oxidation at high pressure and intermediate temperatures
Combust Sci Technol Konnov 152 23 2000 10.1080/00102200008952125 Kinetic modeling of the thermal decomposition of ammonia
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.