$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Inter-residue interactions in protein folding and stability 원문보기

Progress in biophysics and molecular biology, v.86 no.2, 2004년, pp.235 - 277  

Gromiha, M.Michael (Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), Aomi Frontier Building 17F, 2-43 Aomi, Koto-ku, Tokyo 135-0064, Japan) ,  Selvaraj, S. (Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, Tamil Nadu, India)

Abstract AI-Helper 아이콘AI-Helper

AbstractDuring the process of protein folding, the amino acid residues along the polypeptide chain interact with each other in a cooperative manner to form the stable native structure. The knowledge about inter-residue interactions in protein structures is very helpful to understand the mechanism of...

주제어

참고문헌 (169)

  1. Bioinformatics Ahmad 18 819 2002 10.1093/bioinformatics/18.6.819 NETASA 

  2. J. Comp. Chem. Ahmad 24 1313 2003 10.1002/jcc.10298 Design and training of a neural network for predicting the solvent accessibility of proteins 

  3. Proteins Ahmad 50 629 2003 10.1002/prot.10328 Real value prediction of solvent accessibility from amino acid sequence 

  4. Bioinformatics Ahmad 19 1849 2003 10.1093/bioinformatics/btg249 RVP-Net 

  5. J. Biol. Chem. Andersson 267 1491 1992 10.1016/S0021-9258(18)45972-8 Different positively charged amino acids have similar effects on the topology of a polytopic transmembrane protein in Escherichia coli 

  6. J. Mol. Biol. Bahar 266 195 1997 10.1006/jmbi.1996.0758 Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation 

  7. Proteins Bahar 29 292 1997 10.1002/(SICI)1097-0134(199711)29:3<292::AID-PROT4>3.0.CO;2-D Short-range conformational energies, secondary structure propensities, and recognition of correct sequence-structure matches 

  8. Nature Baker 405 39 2000 10.1038/35011000 A surprising simplicity to protein folding 

  9. J. Mol. Biol. Barlow 168 867 1983 10.1016/S0022-2836(83)80079-5 Ion-pairs in proteins 

  10. Science Bowie 253 164 1991 10.1126/science.1853201 A method to identify protein sequences that fold into a known three-dimensional structure 

  11. Protein Sci. Chandonia 5 768 1996 10.1002/pro.5560050422 The importance of larger data sets for protein secondary structure prediction with neural networks 

  12. Protein Eng. Chirgadze 12 101 1999 10.1093/protein/12.2.101 Spatial sign-alternating charge clusters in globular proteins 

  13. Nat. Struct. Biol. Chiti 6 1005 1999 10.1038/14890 Mutational analysis of acylphosphatase suggests the importance of topology and contact order in protein folding 

  14. Fold. Des. Chiu 3 223 1998 10.1016/S1359-0278(98)00030-3 Optimizing energy potentials for success in protein tertiary structure prediction 

  15. J. Mol. Biol. Choe 304 99 2000 10.1006/jmbi.2000.4190 Differential stabilization of two hydrophobic cores in the transition state of the villin 14T folding reaction 

  16. Biochemistry Chou 13 222 1974 10.1021/bi00699a002 Prediction of protein conformation 

  17. J. Mol. Biol. Cota 305 1185 2001 10.1006/jmbi.2000.4378 The folding nucleus of a fibronectin type III domain is composed of core residues of the immunoglobulin-like fold 

  18. J. Mol. Biol. Debe 294 619 1999 10.1006/jmbi.1999.3278 First principles prediction of protein folding rates 

  19. Biopolymers Deber 29 149 1990 10.1002/bip.360290120 Conformations of proline residues in membrane environments 

  20. Nat. Struct. Biol. Dinner 8 21 2001 10.1038/83003 The roles of stability and contact order in determining protein folding rates 

  21. J. Mol. Biol. Dosztanyi 272 597 1997 10.1006/jmbi.1997.1242 Stabilization centers in proteins 

  22. Bioinformatics Drablos 15 501 1999 10.1093/bioinformatics/15.6.501 Clustering of non-polar contacts in proteins 

  23. Protein Eng. Facchiano 11 753 1998 10.1093/protein/11.9.753 Helix stabilizing factors and stabilization of thermophilic proteins 

  24. Proteins Fariselli S5 157 2001 10.1002/prot.1173 Progress in predicting inter-residue contacts of proteins with neural networks and correlated mutations 

  25. Fasman 193 1989 Prediction of Protein Structure and Principles of Protein Conformation The development of the prediction of protein structure 

  26. Proc. Natl. Acad. Sci. USA Fersht 97 1525 2000 10.1073/pnas.97.4.1525 Transition-state structure as a unifying basis in protein-folding mechanisms 

  27. Proteins Flockner 23 376 1995 10.1002/prot.340230311 Progress in fold recognition 

  28. Structure Fowler 9 355 2001 10.1016/S0969-2126(01)00596-2 Mapping the folding pathway of an immunoglobulin domain 

  29. J. Mol. Biol. Fulton 291 445 1999 10.1006/jmbi.1999.2942 Mapping the interactions present in the transition state for unfolding/folding of FKBP12 

  30. Proteins Furuichi 31 139 1998 10.1002/(SICI)1097-0134(19980501)31:2<139::AID-PROT4>3.0.CO;2-H Influence of protein structure databases on the predictive power of statistical pair potentials 

  31. Proc. Natl. Acad. Sci. USA Galzitskaya 96 11299 1999 10.1073/pnas.96.20.11299 A theoretical search for folding/unfolding nuclei in three-dimensional protein structures 

  32. J. Mol. Biol. Garnier 120 97 1978 10.1016/0022-2836(78)90297-8 Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins 

  33. J. Mol. Biol. Gilis 257 1112 1996 10.1006/jmbi.1996.0226 Stability changes upon mutation of solvent-accessible residues in proteins evaluated by database-derived potentials 

  34. J. Mol. Biol. Gilis 272 276 1997 10.1006/jmbi.1997.1237 Predicting protein stability changes upon mutation using database-derived potentials 

  35. Proteins Gobel 18 309 1994 10.1002/prot.340180402 Correlated mutations and residue contacts in proteins 

  36. Nat. Struct. Biol. Grantcharova 5 714 1998 10.1038/1412 Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain 

  37. Protein Eng. Gromiha 12 557 1999 10.1093/protein/12.7.557 A simple method for predicting transmembrane α helices with better accuracy 

  38. Biophys. Chem. Gromiha 91 71 2001 10.1016/S0301-4622(01)00154-5 Important inter-residue contacts for enhancing the thermal stability of thermophilic proteins 

  39. J. Liquid Chromat. Rel. Tech. Gromiha 25 3139 2002 10.1081/JLC-120016214 Influence of cation-pi interactions in mesophilic and thermophilic proteins 

  40. Biophys. Chem. Gromiha 103 251 2003 10.1016/S0301-4622(02)00318-6 Influence of cation-π interactions in different folding types of membrane proteins 

  41. J. Biophys. Soc. Jpn. Gromiha 43 87 2003 Inter-residue interactions in protein structures 

  42. J. Chem. Inf. Comp. Sci. Gromiha 43 1481 2003 10.1021/ci0340308 Importance of native-state topology for determining the folding rate of two-state proteins 

  43. Polymer Gromiha 44 4061 2003 10.1016/S0032-3861(03)00354-9 Factors influencing the thermal stability of buried protein mutants 

  44. Int. J. Pept. Protein Res. Gromiha 42 420 1993 10.1111/j.1399-3011.1993.tb00149.x Prediction of transmembrane beta-strands from hydrophobic characteristics of proteins 

  45. Int. J. Peptide Protein Res. Gromiha 45 225 1995 10.1111/j.1399-3011.1995.tb01484.x Prediction of protein secondary structures from their hydrophobic characteristics 

  46. Int. J. Pept. Protein Res. Gromiha 48 452 1996 10.1111/j.1399-3011.1996.tb00863.x Hydrophobic distribution and spatial arrangement of amino acid residues in membrane proteins 

  47. J. Biol. Phys. Gromiha 23 151 1997 10.1023/A:1004981409616 Influence of medium and long range interactions in different structural classes of globular proteins 

  48. J. Biol. Phys. Gromiha 23 209 1997 10.1023/A:1005071232497 Influence of medium and long range interactions in (α/β)8 barrel proteins 

  49. Protein Eng. Gromiha 11 249 1998 10.1093/protein/11.4.249 Protein secondary structure prediction in different structural classes 

  50. Biophys. Chem. Gromiha 77 49 1999 10.1016/S0301-4622(99)00010-1 Importance of long-range interactions in protein folding 

  51. Prep. Biochem. Biotech. Gromiha 29 339 1999 10.1080/10826069908544933 Influence of medium and long range interactions in protein folding 

  52. Period. Biolog. Gromiha 101 333 1999 Amino acid clustering pattern and medium and long-range interactions in (α/β)8 barrel proteins 

  53. Recent Res. Dev. Biophys. Chem. Gromiha 1 1 2000 Inter-residue interactions in the structure, folding and stability of proteins 

  54. J. Mol. Biol. Gromiha 310 27 2001 10.1006/jmbi.2001.4775 Comparison between long-range interactions and contact order in determining the folding rates of two-state proteins 

  55. Int. J. Biol. Macromol. Gromiha 29 25 2001 10.1016/S0141-8130(01)00150-7 Role of medium and long-range interactions in discriminating globular and membrane proteins 

  56. Gromiha, M.M., Selvaraj, S. (Eds.), 2002a. Recent Research Developments in Protein Folding, Stability and Design. Research Signpost, Trivandrum, India. 

  57. FEBS Lett. Gromiha 526 129 2002 10.1016/S0014-5793(02)03122-8 Important amino acid properties for determining the transition state structures of two-state protein mutants 

  58. Int. J. Biol. Macromol. Gromiha 32 93 2003 10.1016/S0141-8130(03)00042-4 Variation of amino acid properties in all-β globular and outer membrane protein structures 

  59. Prep. Biochem. Biotech. Gromiha 31 217 2001 10.1081/PB-100104905 Role of medium- and long-range interactions to the stability of the mutants of T4 lysozyme 

  60. Protein Eng. Gromiha 10 497 1997 10.1093/protein/10.5.497 Identification of membrane spanning beta strands in bacterial porins 

  61. Protein Eng. Gromiha 12 549 1999 10.1093/protein/12.7.549 Role of structural and sequence information in the prediction of protein stability changes 

  62. J. Protein Chem. Gromiha 18 565 1999 10.1023/A:1020603401001 Relationship between amino acid properties and protein stability 

  63. Nucl. Acids Res. Gromiha 27 286 1999 10.1093/nar/27.1.286 ProTherm 

  64. Biophys. Chem. Gromiha 82 51 1999 10.1016/S0301-4622(99)00103-9 Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins 

  65. Nucl. Acids Res. Gromiha 28 283 2000 10.1093/nar/28.1.283 ProTherm, version 2.0 

  66. J. Biomol. Struct. Dyn. Gromiha 18 281 2000 10.1080/07391102.2000.10506666 Importance of surrounding residues for protein stability of partially buried mutations 

  67. Nucl. Acids Res. Gromiha 30 301 2002 10.1093/nar/30.1.301 ProTherm, thermodynamic database for proteins and mutants 

  68. Biopolymers Gromiha 64 210 2002 10.1002/bip.10125 Importance of mutant position in Ramachandran plot for predicting protein stability of surface mutations 

  69. Prep. Biochem. Biotechnol. Gromiha 32 355 2002 10.1081/PB-120015459 Role of cation-pi interactions to the stability of thermophilic proteins 

  70. J. Mol. Biol. Guerois 304 967 2000 10.1006/jmbi.2000.4234 The sh3-fold family 

  71. Proteins Gugolya 27 360 1997 10.1002/(SICI)1097-0134(199703)27:3<360::AID-PROT4>3.0.CO;2-H Interresidue interactions in protein classes 

  72. J. Mol. Biol. Hamill 297 165 2000 10.1006/jmbi.2000.3517 The folding of an immunoglobulin-like greek key protein is defined by a common-core nucleus and regions constrained by topology 

  73. J. Mol. Biol. Heringa 220 151 1991 10.1016/0022-2836(91)90388-M Side-chain clusters in protein structures and their role in protein folding 

  74. Protein Eng. Islam 8 513 1995 10.1093/protein/8.6.513 Identification and analysis of domains in proteins 

  75. Comput. Appl. Biosci. Ito 13 415 1997 Prediction of protein secondary structure using the 3D-1D compatibility algorithm 

  76. J. Mol. Biol. Itzhaki 254 260 1995 10.1006/jmbi.1995.0616 The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods 

  77. Fold. Des. Jackson 3 R81 1998 10.1016/S1359-0278(98)00033-9 How do small single proteins fold? 

  78. Curr. Opin. Struct. Biol. Jaenicke 8 6 738 1998 10.1016/S0959-440X(98)80094-8 The stability of proteins in extreme environments 

  79. J. Mol. Biol. Jäger 311 373 2001 10.1006/jmbi.2001.4873 The folding mechanism of a β-sheet 

  80. J. Mol. Biol. Jewett 326 247 2003 10.1016/S0022-2836(02)01356-6 Cooperativity, smooth energy landscapes and the origins of topology-dependent protein folding rates 

  81. Polymer Jiang 43 6037 2002 10.1016/S0032-3861(02)00501-3 Effect of amino acid on forming residue-residue contacts in proteins 

  82. Nature Jones 358 86 1992 10.1038/358086a0 A new approach to protein fold recognition 

  83. J. Mol. Biol. Kannan 292 441 1999 10.1006/jmbi.1999.3058 Identification of side-chain clusters in protein structures by a graph spectral method 

  84. Proteins Kannan 43 103 2001 10.1002/1097-0134(20010501)43:2<103::AID-PROT1022>3.0.CO;2-X Clusters in alpha/beta barrel proteins: implications for protein structure, function, and folding 

  85. Proc. Natl. Acad. Sci. USA Karlin 93 8344 1996 10.1073/pnas.93.16.8344 Characterizations of diverse residue clusters in protein three-dimensional structures 

  86. J. Mol. Biol. Karlin 239 227 1994 10.1006/jmbi.1994.1365 Measuring residue associations in protein structures. Possible implications for protein folding 

  87. Protein Eng. Karshikoff 11 867 1998 10.1093/protein/11.10.867 Proteins from thermophilic and mesophilic organisms essentially do not differ in packing 

  88. J. Mol. Biol. Kneller 214 171 1990 10.1016/0022-2836(90)90154-E Improvements in protein secondary structure prediction by an enhanced neural network 

  89. J. Mol. Biol. Kocher 235 1598 1994 10.1006/jmbi.1994.1109 Factors influencing the ability of knowledge-based potentials to identify native sequence-structure matches 

  90. Nature Struct. Biol. Kragelund 6 594 1999 10.1038/9384 The formation of a native-like structure containing eight conserved hydrophobic residues is rate-limiting in two-state protein folding of ACBP 

  91. Cell Mol. Life Sci. Kumar 58 1216 2001 10.1007/PL00000935 How do thermophilic proteins deal with heat? 

  92. Protein Eng. Kumar 13 179 2000 10.1093/protein/13.3.179 Factors enhancing protein thermostability 

  93. Biophys. Chem. Kumarevel 75 105 1998 10.1016/S0301-4622(98)00198-7 Analysis of hydrophobic and charged patches and influence of medium- and long-range interactions in molecular chaperones 

  94. Biophys. Chem. Kumarevel 88 81 2000 10.1016/S0301-4622(00)00201-5 Structural class prediction 

  95. Biophys. Chem. Kumarevel 99 189 2002 10.1016/S0301-4622(02)00183-7 Influence of medium- and long-range interactions in different folding types of globular proteins 

  96. Adv. Biochem. Eng. Biotechnol. Ladenstein 61 37 1998 Proteins from hyperthermophiles 

  97. Nature Levitt 261 552 1976 10.1038/261552a0 Structural patterns in globular proteins 

  98. Fold. Des. Lopez-Hernandez 1 43 1996 10.1016/S1359-0278(96)00011-9 Structure of the transition state for folding of the 129 aa protein CheY resembles that of a smaller protein, CI-2 

  99. Biochemistry Lorch 38 1377 1999 10.1021/bi9817820 Effects of core mutations on the folding of a beta-sheet protein 

  100. J. Mol. Biol. MacArthur 218 397 1991 10.1016/0022-2836(91)90721-H Influence of proline residues on protein conformation 

  101. Protein Sci. Makarov 12 17 2003 10.1110/ps.0220003 The topomer search model 

  102. Proc. Natl. Acad. Sci. USA Makarov 99 3535 2002 10.1073/pnas.052713599 How the folding rate constant of simple, single-domain proteins depends on the number of native contacts 

  103. Arch. Biochem. Biophys. Manavalan 184 476 1977 10.1016/0003-9861(77)90457-X A study of the preferred environment of amino acid residues in globular proteins 

  104. Nature Manavalan 275 673 1978 10.1038/275673a0 Hydrophobic character of amino acid residues in globular proteins 

  105. Nature Struct. Biol. Martinez 5 721 1998 10.1038/1418 Obligatory steps in protein folding and the conformational diversity of the transition state 

  106. Nature Matouschek 340 122 1989 10.1038/340122a0 Mapping the transition state and pathway of protein folding by protein engineering 

  107. Ann. Rev. Biochem. Matthews 62 139 1993 10.1146/annurev.bi.62.070193.001035 Structural and genetic analysis of protein stability 

  108. Proc. Natl. Acad. Sci. USA Miller 99 10359 2002 10.1073/pnas.162219099 Experimental evaluation of topological parameters determining protein-folding rates 

  109. Annu. Rev. Biophys. Biomol. Struct. Mirny 30 361 2001 10.1146/annurev.biophys.30.1.361 Protein folding theory 

  110. J. Mol. Biol. Mirny 264 1164 1996 10.1006/jmbi.1996.0704 How to derive a protein folding potential? A new approach to an old problem 

  111. Macromolecules Miyazawa 18 534 1985 10.1021/ma00145a039 Estimation of interresidue contact energies from protein crystal structures 

  112. J. Mol. Biol. Miyazawa 256 623 1996 10.1006/jmbi.1996.0114 Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading 

  113. Proteins Miyazawa 36 347 1999 10.1002/(SICI)1097-0134(19990815)36:3<347::AID-PROT9>3.0.CO;2-3 Evaluation of short-range interactions as secondary structure energies for protein fold and sequence recognition 

  114. Proteins Miyazawa 36 357 1999 10.1002/(SICI)1097-0134(19990815)36:3<357::AID-PROT10>3.0.CO;2-U An empirical energy potential with a reference state for protein fold and sequence recognition 

  115. Proc. Natl. Acad. Sci. USA Munoz 96 11311 1999 10.1073/pnas.96.20.11311 A simple model for calculating the kinetics of protein folding from three-dimensional structures 

  116. J. Theor. Biol. Nolting 194 419 1998 10.1006/jtbi.1998.0783 Structural resolution of the folding pathway of a protein by correlation of phi-values with inter-residue contacts 

  117. Nolting 1999 Protein Folding Kinetics 

  118. J. Theor. Biol. Nolting 197 113 1999 10.1006/jtbi.1998.0860 Analysis of the folding pathway of chymotrypsin inhibitor by correlation of phi-values with inter-residue contacts 

  119. Nature Struct. Biol. Northey 9 126 2002 10.1038/nsb748 Hydrophobic core packing in the SH3 domain folding transition state 

  120. J. Phys. Chem. Oobatake 85 1187 1981 10.1021/j150609a022 Residue-residue potential function for conformational Analysis of proteins 

  121. Structure Orengo 5 1093 1997 10.1016/S0969-2126(97)00260-8 CATH-a hierarchic classification of protein domain structures 

  122. Proc. Natl. Acad. Sci. USA Otzen 91 10422 1994 10.1073/pnas.91.22.10422 Structure of the transition state for the folding/unfolding of the barley chymotrypsin inhibitor 2 and its implications for mechanisms of protein folding 

  123. J. Mol. Biol. Ouzounis 232 805 1993 10.1006/jmbi.1993.1433 Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures 

  124. FASEB J. Pace 10 75 1996 10.1096/fasebj.10.1.8566551 Forces contributing to the conformational stability of proteins 

  125. J. Mol. Biol. Park 266 831 1997 10.1006/jmbi.1996.0809 Factors affecting the ability of energy functions to discriminate correct from incorrect folds 

  126. J. Mol. Biol. Plaxco 277 985 1998 10.1006/jmbi.1998.1645 Contact order, transition state placement and the refolding rates of single domain proteins 

  127. Proteins Pollastri 47 142 2002 10.1002/prot.10069 Prediction of coordination number and relative solvent accessibility in proteins 

  128. Prog. Biophys. Mol. Biol. Ponnuswamy 59 57 1993 10.1016/0079-6107(93)90007-7 Hydrophobic characteristics of folded proteins 

  129. Int. J. Pept. Protein Res. Ponnuswamy 42 326 1993 10.1111/j.1399-3011.1993.tb00502.x Prediction of transmembrane helices from hydrophobic characteristics of proteins 

  130. J. Theor. Biol. Ponnuswamy 166 63 1994 10.1006/jtbi.1994.1005 On the conformational stability of folded proteins 

  131. Proc. Natl. Acad. Sci. USA Ponnuswamy 70 830 1973 10.1073/pnas.70.3.830 Role of medium-range interactions in proteins 

  132. Biochim. Biophys. Acta Ponnuswamy 623 301 1980 10.1016/0005-2795(80)90258-5 Hydrophobic packing and spatial arrangement of amino acid residues in globular proteins 

  133. FEBS Lett. Poupon 452 283 1999 10.1016/S0014-5793(99)00622-5 Predicting the protein folding nucleus from sequences 

  134. J. Mol. Biol. Qian 202 865 1988 10.1016/0022-2836(88)90564-5 Predicting the secondary structure of globular proteins using neural network models 

  135. Protein Eng. Querol 9 265 1996 10.1093/protein/9.3.265 Analysis of protein conformational characteristics related to thermostability 

  136. Protein Eng. Reva 10 865 1997 10.1093/protein/10.8.865 Residue-residue mean-force potentials for protein structure recognition 

  137. Protein Eng. Rooman 8 849 1995 10.1093/protein/8.9.849 Are database-derived potentials valid for scoring both forward and inverted protein folding? 

  138. Biochemistry Rooman 31 10226 1992 10.1021/bi00157a009 Extracting information on folding from the amino acid sequence 

  139. Proteins Rost 19 55 1994 10.1002/prot.340190108 Combining evolutionary information and neural networks to predict protein secondary structure 

  140. Proteins Rost 20 216 1994 10.1002/prot.340200303 Conservation and prediction of solvent accessibility in protein families 

  141. Curr. Opin. Struct. Biol. Russ 12 447 2002 10.1016/S0959-440X(02)00346-9 Knowledge-based potential functions in protein design 

  142. Protein Eng. Russell 11 1 1998 10.1093/protein/11.1.1 Recognition of analogous and homologous protein folds-assessment of prediction success and associated alignment accuracy using empirical substitution matrices 

  143. Protein Eng. Selbig 8 339 1995 10.1093/protein/8.4.339 Contact pattern-induced pair potentials for protein fold recognition 

  144. Proteins Selbig 31 172 1998 10.1002/(SICI)1097-0134(19980501)31:2<172::AID-PROT7>3.0.CO;2-O Relationships between protein sequence and structure patterns based on residue contacts 

  145. J. Protein Chem. Selvaraj 17 407 1998 10.1023/A:1022514400583 An analysis of the amino acid clustering pattern in (α/β)8 barrel proteins 

  146. J. Protein Chem. Selvaraj 17 691 1998 10.1007/BF02780972 Importance of long-range interactions in (α/β)8 barrel fold 

  147. Curr. Sci. Selvaraj 78 129 2000 Inter-residue interactions in protein structures 

  148. Biophys. J. Selvaraj 84 1919 2003 10.1016/S0006-3495(03)75000-0 Role of hydrophobic clusters and long-range contact networks in the folding of (α/β)8 barrel proteins 

  149. Proteins Seno 30 244 1998 10.1002/(SICI)1097-0134(19980215)30:3<244::AID-PROT4>3.0.CO;2-K Interaction potentials for protein folding 

  150. J. Mol. Biol. Sippl 213 859 1990 10.1016/S0022-2836(05)80269-4 Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins 

  151. Curr. Opin. Struct. Biol. Sippl 5 229 1995 10.1016/0959-440X(95)80081-6 Knowledge-based potentials for proteins 

  152. Proteins Skolnick 42 319 2001 10.1002/1097-0134(20010215)42:3<319::AID-PROT30>3.0.CO;2-A Defrosting the frozen approximation 

  153. Proteins Skolnick S5 149 2001 10.1002/prot.1172 Ab initio protein structure prediction via a combination of threading, lattice folding, clustering, and structure refinement 

  154. Struct. Fold. Des. Szilagyi 8 5 493 2000 10.1016/S0969-2126(00)00133-7 Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits 

  155. Proc. Natl. Acad. Sci. Tanaka 72 3802 1975 10.1073/pnas.72.10.3802 Model of protein folding 

  156. Proc. Natl. Acad. Sci. USA Ternstrom 96 14854 1999 10.1073/pnas.96.26.14854 From snapshot to movie 

  157. J. Mol. Biol. Thornton 151 261 1981 10.1016/0022-2836(81)90515-5 Disulphide bridges in globular proteins 

  158. Proteins Tobi 40 71 2000 10.1002/(SICI)1097-0134(20000701)40:1<71::AID-PROT90>3.0.CO;2-3 On the design and analysis of protein folding potentials 

  159. Protein Eng. Topham 10 7 1997 10.1093/protein/10.1.7 Prediction of the stability of protein mutants based on structural environment-dependent amino acid substitution and propensity tables 

  160. Int. J. Pept. Protein Res. Tudos 43 205 1994 10.1111/j.1399-3011.1994.tb00524.x Different sequence environments of amino acid residues involved and not involved in long-range interactions in proteins 

  161. J. Mol. Biol. Villegas 283 1027 1998 10.1006/jmbi.1998.2158 Structure of the transition state in the folding process of human procarboxypeptidase A2 activation domain 

  162. J. Mol. Biol. Vogt 269 631 1997 10.1006/jmbi.1997.1042 Protein thermal stability, hydrogen bonds, and ion pairs 

  163. Proc. Natl. Acad. Sci. USA Wilmanns 90 1379 1993 10.1073/pnas.90.4.1379 Three-dimensional profiles from residue-pair preferences 

  164. J. Mol. Biol. Xiao 289 1435 1999 10.1006/jmbi.1999.2810 Electrostatic contributions to the stability of hyperthermophilic proteins 

  165. Protein Sci. Zehfus 4 1188 1995 10.1002/pro.5560040617 Automatic recognition of hydrophobic clusters and their correlation with protein folding units 

  166. Proc. Natl. Acad. Sci. USA Zhang 97 2550 2000 10.1073/pnas.040573597 Environment-dependent residue contact energies for proteins 

  167. Protein Sci. Zhang 7 112 1998 10.1002/pro.5560070112 How do potentials derived from structural databases relate to “true” potentials? 

  168. Polymer Zhang 44 1751 2003 10.1016/S0032-3861(03)00021-1 Folding rate prediction based on neural network model 

  169. Biophys. J. Zhou 82 458 2002 10.1016/S0006-3495(02)75410-6 Folding rate prediction using total contact distance 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로